
NLPX - An XML-IR System with a Natural Language Interface

Alan Woodley

Centre for Information Technology Innovation

Faculty of Information Technology

Queensland University of Technology

Queensland 4001 Australia

ap.woodley@student.qut.edu.au

Shlomo Geva

Centre for Information Technology Innovation

Faculty of Information Technology

Queensland University of Technology

Queensland 4001 Australia

s.geva@qut.edu.au

Abstract Traditional information retrieval (IR)

systems respond to user queries with ranked lists

of relevant documents. The separation of content

and structure in XML documents allows

individual XML elements to be selected in

isolation. Thus, users expect XML-IR systems to

return highly relevant results that are more

precise than entire documents. This paper

presents such a system. The system accepts

queries in both natural language (English) and

formal XPath-like format (NEXI) and matches to

a set of relevant and appropriately-sized

elements using an effective ranking scheme.

Keywords Information Retrieval, Natural

Language Queries

1.0 Introduction

The widespread use of Extensible Markup

Language (XML) documents in digital libraries

has lead to development of information retrieval

(IR) methods specifically designed for XML

collections. Most traditional IR systems are

limited to whole document retrieval; however,

since XML documents separate content and

structure, XML-IR systems are able to retrieve

the relevant portions of documents. Users

interacting with XML-IR system could

potentially receive highly relevant and highly

precise material. However, it also means that

XML-IR systems are more complex than their

traditional counterparts.

We describe a system that attempts to

solve some of the challenging problems of XML-

IR. In what follows, we first describe how

queries are interpreted by the system. Two query

formats are examined: natural language, and

NEXI queries, an XPath variant where users

express their information need in a formal

language. We then very briefly describe the

internal storage structure of the XML collection

and the ranking scheme that is used to order

results. Finally we present some performance

results from the INEX 2004 Workshop.

2.0 Query Interpretation

The system presented here was designed to

participate in the 2004 Initiative for the

Evaluation of XML Retrieval (INEX) Workshop

[2]. The INEX Workshop is similar to the TREC

workshop. It is an annual event that provides a

world-class benchmark for the evaluation of

XML systems. INEX provides a test collection of

12,000 IEEE journal articles, a set of queries and

a set of evaluation metrics. Two types of queries

are used in INEX: CO and CAS. Content Only

(CO) queries ignore document structure and only

contain content requirements. Contrastly,

Content and Structure (CAS) queries explicitly

express both content and structural requirements.

Both CO and CAS queries are expected to return

appropriately sized elements – not just whole

documents. Figures 1 and 2 are examples of

both query types.

Figure 1 A CO Query

Both the description and title tags express users’

information needs. The description expresses

users’ need in a natural language (e.g. English).

The title expresses users’ information need in

either a list of keywords/phrases (CO) or as a

formal XPath-like language (CAS) called

Narrowed Extended XPath I (NEXI) [5].

<inex_topic topic_id="XX" query_type="CO">

<title>

 "multi layer perceptron" "radial basis

functions" comparison

</title>

<description>

 The relationship and comparisons between

radial basis functions and multi layer

perceptrons

</description>

</inex_topic>

Proceedings of the 9th Australian Document

Computing Symposium, Melbourne, Australia,

December 13, 2004. Copyright for this article

remains with the authors.

Figure 2 A CAS Query

 NEXI’s syntax is //A[about(//B,C)] where

A is the context path, B is the relative path and C

is the content requirement. Each ‘about’ clause

represents an individual information request. So

the query //A[about(//B,C)]//X[about(//Y,Z)]

contains two requests: //A[about(//B,C)] and

//A//X[about(//Y,Z)]. However, in NEXI only

elements matching the leaf (i.e. rightmost)

‘about’ clause are returned to the user, and the

others are used to support the return elements in

ranking.

In 2004 INEX introduced its natural

language track. At the INEX 2003 Workshop

more than two-thirds of the proposed queries had

major semantic or syntactic errors [4] that

required 12 rounds of corrections. Since experts

in the field of structured information retrieval are

unable to easily use formal query languages, one

cannot expect an inexperienced user to do so.

However, most users are able to intuitively

express their information need in a natural

language. There already exists an extensive body

of research into natural language processing in

the specific area of Information Retrieval, largely

thanks to The Text Retrieval Conference (TREC)

and the Special Interest Group for Information

Retrieval (ACM-SIGIR). However, work on an

XML-IR interface is still largely un-documented

and many problems remain unsolved.

2.1 Natural Language Query (NLQ) to

NEXI Translator

Our system was originally developed

for participation in the Ad-hoc track using NEXI.

We adapted it to handle natural language queries

by converting NLQs to NEXI.

Step 1 Lexical and Semantic Tagging
Suppose that the description tags in Figure 1 and

2 are input into the system as natural language

queries (NLQ). Translating the NLQs into NEXI

format takes several steps. First each word is

tagged as either as a special connotation or by its

part of speech. Special connotations are words of

implied semantic significance within the system.

Our system uses three types of special

connotations: structural words that indicate the

structural requirement of the user (e.g. article,

section, paragraph, etc.), boundary words that

separate the user’s structural and content

requirements (e.g. about, containing) and

instruction words that indicate if we have a

return or support request. All other words are

tagged by their part of speech. Any part-of-

speech tagger could perform this task; however,

our system uses the Brill Tagger [1]. Figure 3 is

an example of the NLQ after tagging.

Figure 3 A Tagged CO and CAS Natural

Language Query

Step 2 Template Matching

The translator’s second task is to derive

information requests from the tagged NLQ by

matching the tagged NLQ to a predefined set of

grammar templates. The grammar templates

were developed by inspection of previous years’

INEX queries. NLQs have a narrow context and

require the understanding of only a subset of

natural language. A system that interprets NLQs

requires fewer rules than a system that attempts

to understand natural language in general.

Inspection of previous INEX queries reveals that

most queries correspond to a small set of

patterns. By extracting these patterns we were

able to formulate grammar templates that

matched a majority of queries. Figure 4 shows

some of the grammar templates.

Figure 4 Grammar Templates

Each grammar template corresponds to an

individual information request. Each

Query: Request+

Request : CO_Request | CAS_Request

CO_Request: NounPhrase+

CAS_Request: SupportRequest | ReturnRequest

SupportRequest: Structure [Bound] NounPhrase+

ReturnRequest: Instruction Structure [Bound] NounPhrase+

<inex_topic topic_id="XX"

query_type="CAS">

<title>

 //article[about(.,information

retrieval)]//sec[about(.,compression)]

</title>

<description>

 Find sections about compression in

articles about information retrieval.

</description>

</inex_topic>

NLQ 1: The/DT relationship/NN and/CC

comparisons/NNS between/IN radial/JJ basis/NN

functions/NNS and/CC multi/NNS layer/NN

perceptions/NN

NLQ 2: Find/XIN sections/XST about/XBD

compression/NN in/IN articles/XST about/XBD

information/NN retrieval/NN

information request has three attributes:

Content, a list of terms or phrases expressing

users content requirements, Structure, a logical

XPath expression that describes the structural

constraints of the request. And Instruction, “R”

if we have a return request or “S” if we have a

support request. Figure 5 is an example of the

information requests derived from the templates.

Figure 5 Derived Information Requests

Step 3 NEXI Query Production

The final step in the translator is to merge the

information request into a single NEXI query.

Return requests are output in the form

A[about(.,C)] where A is the request structural

attribute and C is the request content attribute.

To add support requests, we must first locate the

longest matching string in the return request and

then add the support request in the form

D[about(E,F)] where D is the longest matching

string, E is the remainder of the support request

structural attribute and F, is the support requests

content attribute.

Figure 6 is how the NEXI queries

would appear after the information requests for

each NLQ have been merged.

Figure 6 NLQ-to-NEXI Queries

2.2 Processing NEXI Queries

Once NEXI queries are input into the system

they are converted into an intermediate language

called the RS query language. The RS query

language converts NEXI queries to a set of

information requests. The format of RS queries is

Request: Instruction ‘|’ Retrieve_Filter ‘|’

Search_Filter ‘|’ Content.

The Instruction and Content attributes are the

same as they were in the previous section;

however, the Structural attribute has been

divided into a Retrieve and Search Filter. While

both are logical XPath expressions the Retrieve

Filter describes which elements should be

retrieved by the system, while, the Search Filter

describes which elements should be searched by

the system. Figure 7 is an example of the queries

introduced earlier converted to RS queries.

Figure 7 An Example of an RS Query

3.0 System Structure

We index the XML collection using an inverted

list. Given a query term we can derive the

filename, physical XPath and the ordinal position

within the XPath that it occurred in. From there

we construct a partial XML tree containing every

relevant leaf element for each document that

contains a query term. Further information on

our structure can be found in [3].

4.0 Ranking Scheme

Elements are ranked according to their relevance.

Data in an XML tree is mostly stored in leaf

elements. So first we calculate the score of

relevant leaf elements, then, we propagate their

scores to their ancestor branch elements.

 The relevance score of leaf elements is

computed from term frequencies within the leaf

elements normalised by their global collection

frequency. The scoring scheme rewards

elements with more query terms. However, it

penalises elements with frequently occurring

query terms, and rewards elements that contain

more distinct query terms.

The relevance score of a non-leaf is the

sum of the children scores. However leaf

element scores are moderated by a slight decay

NLQ 1:
Structure: /*

Content: relationship, comparisons, radial basis

functions, multi layer perceptions

Instruction: R

NLQ 2:

 Request 1 Request 2
Structural: /article/sec /articlec

Content: compression information retrieval

Instruction: R S

NLQ 1:

//*[about(.,relationship, comparisons, radial

basis functions, multi layer perceptions)]

NLQ 2:
//article[about(.,information

retrieval)]//sec[about(.,compression)]

RS Query 1:

 R|//*|//*| relationship, comparisons, radial basis

functions, multi layer perceptions

RS Query 2:

R|//article//sec|//article//sec|compression

S|//article|//article| information retrieval

factor as they propagate up the tree. Branch

elements with multiple relevant children are

likely to be ranked higher then their descendents

– as they are more comprehensive - while branch

elements with a single relevant child will be

ranked lower than the child element as they are

less specific.

5.0 Results

The system was entered into both the Ad-hoc and

NLP tracks at INEX2004. In the Ad-hoc track

the system ranked 1
st
 from 52 submitted runs in

the VCAS task, and 6
th

 from 70 submitted runs

in the CO task. In the NLP track the system was

ranked 1
st
 in the VCAS task and 2

nd
 in the CO

task. While the NLP track was limited to 9

participants initially, of which only 4 made

official submissions, the most encouraging

outcome was that the NLP system outperformed

several Ad-Hoc systems. In fact, if the NLP

submission was entered in the Ad-hoc track it

would have ranked 12
th

 from 52 in VCAS and

13
th

from 70 in CO. This seems to suggest that in

structured IR, natural language queries have the

potential to be a viable alternative, albeit not as

precise, to a formal query language such as

NEXI (an XPath derivative).

 The Recall/Precision Curves for the Ad-

hoc track, along with the R/P curve for our NLP

runs are presented in Figures 8 and 9. The top

bold curve is the Ad-hoc curve, the lower is the

NLP curve, and the background curves are of all

the official Ad-hoc runs at INEX 2004.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2004 VCAS Queries

Figure 8 The INEX 2004 VCAS R/P Curve

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

c
is

io
n

Recall

INEX 2004 CO Queries

Figure 9 The 2004 INEX CO R/P Curve.

6.0 Conclusion and Future Outlook

This paper presents an XML-IR system responds

to user queries with relevant and appropriately

sized results. Our ranking scheme is comparable

with the best INEX alternatives. The NLP

interface requires further development; however,

initial results are promising. The system provides

a working example of the potential of XML-IR

systems.

References

 [1] E. Brill. A Simple Rule-Based Part of Speech

Tagger. In Proceedings of the Third Conference

on Applied Computational Linguistics (ACL),

Trento, Italy. 1992.

[2] N. Fuhr and S. Malik. Overview of the

Initiative for the Evaluation of XML Retrieval

(INEX) 2003. In INEX 2003 Workshop

Proceedings, Schloss Dagstuhl, Germany,

December 15-17, 2003, pages 1-11. 2004.

[3] S. Geva and M. Spork. XPath Inverted File for

Information Retrieval, In INEX 2003 Workshop

Proceedings, Schloss Dagstuhl, Germany,

December 15-17,2003, pages 110-117. 2004.

[4] Trotman, A. and O’Keefe, “The Simplest Query

Language That Could Possibly Work”, In

INEX 2003 Workshop Proceedings, Schloss

Dagstuhl, Germany, December 15-17,2003,

pages 167-174, 2004.

[5] A. Trotman and B. Sigurbjörnsson, Narrowed

Extended XPath I (NEXI),

http://www.cs.otago.ac.nz/postgrads/andrew/20

04-4.pdf, 2004.

