
Document modelling for customised information delivery

Shijian LU, Cécile PARIS
CSIRO ICT Centre

Locked Bag 17,
North Ryde NSW 1670 Australia

(Shijian.lu, Cecile.paris)@csiro.au

Mingfang WU
CSIRO ICT Centre

Private Bag 33
Clayton South, VIC Australia

Mingfang.wu@csiro.au

Abstract As the amount of information available to
people multiplies at an increasing speed, it becomes
ever more important to deliver information
customised to users’ specific needs. Natural
Language Generation systems coupled with user
modeling techniques have been built to address this
issue, to produce information that is relevant to the
users . A common approach adopted by such systems
is an approach based on planning, starting from a
discourse (or communicative) goal, and planning the
text to be presented to the users. However, these
systems are not easy to build and difficult to change
by domain experts. One of the problems is that it is
hard to specify the plans employed, because they
often require knowledge about writing, domain
expertise, knowledge of computational linguistics
and, finally, knowledge about how to obtain data
from the underlying information sources. In this
paper, we present our first step to address this
problem.1

Keywords Document modeling, information
retrieval, document generation, personalized
documents.

1.Introduction
The rapid advancement of information technology
has made huge amount information available to more
and more people. Increasingly, people depend on the
availability of information to achieve their objectives.
However, the availability of information does not
necessarily translate to productivity gains. In fact,
studies have shown that productivity often gets
hampered as more and more people are suffering
from information overload or fatigue [4]. Indeed,
information must be relevant to one’s information
needs, and it must be easily understandable in order
to be useful. That is where contextualised information
delivery comes in. Studies have shown that
documents tailored to the needs of individual users
outperform general purpose documents, e.g., [8, 1,
11, 12].

However, applications delivering customised
information are generally expensive to build. Broadly

Proceedings of the 10th Australasian Document
Computing Symposium, Sydney, Australia,
December 12, 2005.
Copyright for this article remains with the authors.

speaking, these applications fall into two categories:
template-based and plan-based. There are pros and cons
with either approach. Template-based systems are
generally easier to construct, but harder to maintain and
less flexible, while plan-based systems, with plans of
finer level of granularity than typical templates are more
flexible and can handle more situations, but require
larger overhead to construct [9].

In this paper, we investigate why plan-based tailored
document generation systems are difficult to build and
report the result of our first step to mitigate the situation.
In section 2, we provide some background information
and our conception of the problem. Our approach is
detailed in Section 3. Before concluding, an example of
using this approach is provided in Section 4.

2.Background
Despite the fact that customised documents are often
more effective than general purpose documents,
applications for delivering tailored documents are far
less common than they should be. A major reason is that
such applications are not easy to develop. Taking
plan-based systems as an example, there are at least two
reasons why that is the case. First, these systems have
typically required extensive semantic knowledge bases
[10] which are expensive to craft. Second, the plan
operators that underpin the systems’ behaviour are
difficult to construct.

In CSIRO, we have been developing Myriad [7], a
platform for tailored information delivery. The Virtual
Document Planner (VDP), its core component, exploits a
plan-based approach based on More and Paris [6]. When
we developed it, however, we paid particular attention to
address the first issue above: we wanted the VDP to
produce presentations customised for the user and the
situation without the need for a large underlying
semantic base. Instead, we wanted to exploit existing
technology concerned with retrieving information from
existing sources. As a result, the VDP combines
discourse planning and document synthesis to gather
information through the use of retrieval services (in this
paper, the notion of retrieval services refer to software
components which perform information retrieval
functions.) that serve as the interface between the two.
[2] This alleviates the need for an extensive (usually
manually constructed) knowledge base.

The second issue remains: plan operators are typically
difficult to write. Before we turn to this problem, we
briefly discuss the advantages of using a plan-based
approach, as opposed to a template-based one. With a

plan-based approach, a system starts with a
communicative goal, and use discourse plan
operators to decompose a high level goal into
primitives, see More and Paris [6] for a more detailed
description of the process. While doing so, the system
builds a discourse tree, which is a rich source of
information allowing the system to perform a number
of reasoning tasks over the generated text.

To illustrate this particular point, let’s take the
recipe analogy. A recipe typically provides the
sequence of steps to be done to produce the dish (i.e.,
the high-level goal). If something goes wrong (or if
the specified ingredient is not available), the person
following the recipe cannot reason about what went
wrong (or about what other ingredient to use instead
of the specified one), as s/he does not know what the
purpose of the ingredient is and its role in the overall
recipe. The only recourse is to find another recipe for
the same dish, hoping this one will succeed (or to find
a recipe that does not include that ingredient). Yet if
the person understood the role of the ingredients and
the steps, s/he may be able to understand what went
wrong (or how to substitute another ingredient).
Similarly, when producing a multi-sentential
document, representing explicitly the intermediary
goals and the relationships between the various
chunks of information allows the system to
understand the role of each element of information
and to reason about their role in achieving the main
communicative goal. This has been used, for
example, to enable a system to participate in a
dialogue [6] and to reason about to realise the text on
the selected delivery medium [2]. It is because of the
resulting discourse tree and the reasoning it enables
that we chose the plan-based approach for our
platform.

Discourse operators are the plans that tell the VDP
how to plan the discourse, and, through their use and
expansion, the discourse tree is generated. The plans in
the VDP/Myriad include discourse goals and rhetorical
relations, the latter based on Rhetorical Structure Theory
(RST) [5]. Figure 1 is an example of a discourse operator.
It specifies how the discourse goal is to be decomposed
into subgoals, thus specifying what content is to be
included in the text (at various levels of abstraction –
e.g., “describe ?staff to ?user” and inform ?user of
specific sub-topics). It also specifies how the text is to be
organised (through both the goal decomposition and the
use of RST relations, e.g., context and elaboration, in the
figure, which explicitates the relationships between the
nucleus and satellites). Operators include constraints
which specify the conditions under which the operator is
applicable. Finally, operators are of course written in a
specific syntax (encoded as XML).
To be competent in writing discourse operators as shown
in Figure 1, one needs to possess the following skills.

(1) computational linguistic skills: how to encode a
discourse segment in terms of communicative
goal and its decomposition (nucleus and
satellites) – in particular, understanding of
discourse theory, Rhetorical Structure Theory
and discourse planning is desirable;

(2) domain knowledge: how to decide under which
conditions a plan is applicable and where to get
the data;

(3) writing skills: how to write a coherent document
appropriate for their audience, and what is the
functional role of different parts of the
document;

(4) Understand the specific syntax.
Clearly, not many people possess all these skills. As a

result, the plans are hard to write for most people, as they

<operator>
 <id>tellUserAboutStaff<id>
 <effect>(Describe ?staff to ?user)</effect>
 <constraint>(user:isNewStaff ?user)</constraint>
 <nucleus>
 <value>(inform ?user ?staff homepage)</value>
 </nucleus>
 <satellite>
 <relation>context</relation>
 <value>(inform?user ?staff team)</value>
 </satellite>
 <satellite>
 <relation>context</relation>
 <value>(inform?user ?staff project)</value>
 </satellite>
 <satellite>
 <relation>elaboration</relation>
 <value>(inform?user ?staff informationFromNet)</value>
 </satellite>
 </operator>

Figure 1. An example discourse plan operator

require a lot of expertise, including technical,
domain-oriented and writing expertise. Yet it is
through plan operators that one specifies the types of
text to be generated.

We would like people knowledgeable about the
texts required in their domain and with writing skills
(so people with writing skills in their domain) to be
able to specify these texts, while keeping the
advantages of the discourse planning approach, in
particular keeping the discourse tree structure that
enables further reasoning. To this end, we have
started to design a new way to specify the plan
operators, to decouple the specification of the
structure of the text from the specification of how to
retrieve the data, and to provide an abstract way to
specify this structure – while still being able to
produce the discourse tree.

Our approach is underpinned by three basic
constructs: the content structure, the retrieval table
and a set of generic operators. The content structure
can be seen as a document definition model which is
domain dependent. Therefore, it is to be authored by
someone who knows how to write texts in their
domain. The retrieval table is a registry of retrieval
functions available in an application domain. It
should be constructed by a software engineer in
collaboration with a domain expert, as the data
sources themselves are likely to be domain
dependent. The set of generic operators is domain
independent and have been authored while
implementing the approach. They can now be used by
different domain applications.

3.Modelling document for generation
We have introduced the notion of content structure.

In a sense, the content structure is an abstract
definition of a dynamic document. A content
structure is composed of content nodes and
relationships among them. Apart from hierarchical
relationship, sibling nodes are related by RST [5].
The content structure can be seen as the blue-print for
a tailored document. It (1) defines the rhetorical
structure among different chunks of information in a

dynamic document; (2) specifies relevant scopes for any
particular topic/content node in relation to any contextual
models; (3) links retrieval services to the content nodes
so that the appropriate data can be retrieved from the
underlying data sources.

With the constructs of content structure and retrieval
services, we have devised a set of domain independent
operators. These domain independent operators, or
generic operators, can be used to operate on any content
structure for any application domains to generate the
desired domain dependent discourse trees. With this
approach, there is no need for computational linguistists
with domain knowledge to author conventional domain
dependent discourse operators for a new application.
Instead, only people with domain expertise and writing
skills are required to author (domain dependent) content
structure. In the following sub-sections, the constructs of
content structure, retrieval table and generic operators
will be further elaborated.

3.1.The Content structure
The content structure, a tree structure with content

nodes, is a hierarchical representation of the document to
be generated, which could be seen as a hierarchy of
topics. At each level of decomposition, there are two
types of content nodes (topics): essential and
non-essential, essentially mirroring the nucleus/satellite
distinction of RST: Essential nodes (nuclei) correspond
to primary information that must be included in the text,
while information contained in non-essential nodes
(satellites) can be secondary or supportive. Again
mirroring an RST structure, nodes have to be related with
a rhetorical relation. In particular, non-essential nodes
have to be related to essential nodes with an RST
relationship, e.g., background, context, elaboration,
justification, etc. Both types of nodes can be decomposed
further.

Figure 2 shows a schematic view of a content node.
Each node has a unique name, a textual description, a
specification of its scope of applicability, its content
proper and an attribute specifying whether it is essential
or not.

Figure 2. A schematic view of topic

topic

background
context
elaboration
illustration
justification
preparation
supertopicdescription

scope

content

essential

name

Figure 3 shows a fragment of a content structure.
This structure was defined for a new application we
are constructing at present: StaffConnector. The
system is concerned with providing information
about a staff member. This is shown as the top-level
node, shaded pink (or darker grey in black&white
print), in the top left corner of the picture. The
decomposition of the node is shown through the
boxes. The author of this content structure decided
that the virtual document to be generated in this case
(as a web page) consists of either an introduction of
the staff member, if the user (reader) is a new staff
member him or herself, or an update on the staff
member (consisting of a summary of the home page,
a summary of email exchanges between this staff
member and the user and information from internal
sources). Both nodes are then decomposed further.

The scope attribute (shown in the rectangle above
the node) defines the applicability or relevance of a
topic under certain context. In this example, the “staff
introduction” node has a user scope of
“user:isNewStaff(user:getCurrentUser))”.
“user:getCurrentUser” will return the current user
from the user model, and “user:isNewStaff(x)” is a
Boolean function, which returns TRUE, if x is a new
staff, exploiting internal human resource databases.
As a result, the node “staff introduction” is only
applicable to users who are deemed to be new staff.
Scope for a topic is evaluated when the content
structure is interpreted by the set of generic plan
operators using the constraint mechanism of the plan

operators, at runtime.
In essence, the scope provides a simple mechanism to

enable “class” level customisation of tailored documents,
i.e., inclusion or exclusion of content nodes based on
contextual models (which refer to the user, the task, the
domain, the discourse history or the environment [7].
(Instance level customisation would refer to different
content delivered for different users, but corresponding
to the same content node.)

Both nodes are further decomposed: “staff
introduction” is further decomposed into the topics:
“content of home page”, “team” (the staff’s position
within the organisation hierarchy), “project” (the projects
the staff is involved) and “staff on the net” (information
related to the staff by searched from the net), where:

• “content of home page” node provides
essential information (nucleus, indicated by
the pink colour – or darker grey in B&W -- of
the node);

• “team” and “project” nodes provide
circumstantial information (satellites, shown
in blue – or lighter grey in B&W, related to
the nucleus by the RST relation called
context, indicated on the link);

• “information from web sources” provides
more information (a satellite, related to its
nucleus with the RST relation called
elaboration).

Figure 3. A content structure Fragment

The content structure thus defines the abstract
document structure and how different parts relate to
each other. It also defines under what circumstances
different parts (nodes) may be applicable (the scope).
Finally, it also specifies how to acquire the actual
content via retrieval services (not shown in the
figure). Typically, retrieval services are mapped to
the leaf nodes in the content structure. Retrieval
services are registered into and managed by the
retrieval table, explained in the next section.

3.2.Retrieval table
The retrieval table is used to manage retrieval

services developed for specific applications.
Retrieval services are software components which
perform information retrieval functions. There are
two types of retrieval services: elementary and
composite. Elementary retrieval services directly
retrieve needed information, while composite
retrieval services are composed of elementary
retrieval services or/and other composite retrieval
services. Figure 4 shows a fragment of the retrieval
table. Here, the first retrieval service, namely,
“getProject”, is elementary; and the second retrieval
service (“getHomepage”) is composite.

As shown in Figure 4, each retrieval service is
described by a set of attributes. The <id> field is a
unique identifier and, by convention, describes the
function of the retrieval service. The <service> field
points to the software implementation that will obtain the
appropriate data from designated data sources. The
<description> field explains what the retrieval service is
used for which is what the document designer will see the
document design authoring tool. The data sources, which
could be files, web sites, databases, and others, are
specified in the <access> field. Each service is

implemented individually for a specific retrieval
purpose, and all retrieval services conform to a common
protocol in the Myriad delivery platform.

Composite retrieval services can be defined with the
<query> field. In Figure 4, when the “getHomepage”
composite retrieval service is called, the retrieval service
“getStaff” will be evaluated first, returning the staff id.
Then, the retrieval service “GetPersonalAttribute” will
be evaluated.

The retrieval table thus contains both elementary and
composite services and their definitions. Topics in the
content structure refer to retrieval services in the retrieval
table. When the content structure gets processed by the
generic operators, the generation engine evaluates these
retrieval services to acquire information.

Figure 4. A fragment of retrieval table

<retrievalTable>
 <retrieval>
 <id>getProject</id>
 <service>GetProject</service>
 <format>xml</format>
 <description> get information about a project </description>
 <access>../../../resources/cmis_org.xml</access>
 <query></query>
 <load>true</load>
 <returnTime></returnTime>
 <returnSize></returnSize>
 <contenttype></contenttype>
 <stylesheet></stylesheet>
 </retrieval>
 <retrieval>
 <id>getHomepage</id>
 <service></service>
 <format>xml</format>
 <description>get staff's home page</description>
 <access></access>
 <query>(retrieval:GetPersonalAttribute (retrieval:getStaff)
 homepage)</query>
 <load>true</load>
 <returnTime></returnTime>
 <returnSize></returnSize>
 <contenttype>text/html</contenttype>
 <stylesheet></stylesheet>

</retrieval>
… …

3.3.Generic operators
Having the construct of content structure, we can

process it with a set of generic operators and produce
a discourse tree akin to the one produced through the
conventional discourse operators. The generic
operators, starting from the root node of the content
structure, perform the following tasks:

(1) evaluate the scope of a node if there is one.
The node will not be further processed if
result of the evaluation is false;

(2) post appropriate discourse goals by
branching out to children nodes;

(3) evaluate any retrieval services that may be
attached to a content node, and bind the result
in the appropriate structure of the discourse
tree.

 Figure 5 is an example of generic plan operator.
It is worth noting that there is a limited set of generic
discourse operators.

4. A test application
We tried this new approach on a new application

we are developing: StaffConnector. We thus:
(1) developed the retrieval table and associated

retrieval services;
(2) authored the domain dependent content

structure;
For this application, we developed a simple user

model to differentiate new staff from old staff. It is
worth noting that the content structure and retrieval
table development go hand in hand, even if they can

be defined by different people. On the one hand, the
content structure sets requirement for what retrieval
services are needed. On the other hand, retrieval services
determine the content that can be called from the content
structure.

To facilitate the authoring of content structure, we
have developed a content structure authoring tool,
Constructor. This is what was illustrated in Figure 3.

The retrieval service “getHomepage” (Figure 4),
which retrieves a specified staff’s homepage from ICT
Centre’s intranet, is attached to the “staff home page”
node. Retrieval services are also developed to acquire
staff’ team information, projects involved in, and
information about a specified staff on the net (intranet,
extranet, and internet).

Once the retrieval table and content structure are built,
they are fed into the VDP together with the set of generic
operators. Inside the VDP, the content structure is
processed by the generic operators, where applicability
scopes get assessed and retrieval services get executed.
The outcome is a fully fledged discourse tree, which is
then processed with presentation operators. The final
outcome is a set of HTML documents which are tailored
to the user model. Figure 6 shows the main page of the
staff overview application. As it can be seen, there are
two panes in the window. The left pane shows the table
content view of the document. It provides a global view
of the document and can be used to navigate to different
sections within the document. By default, the first section
is displayed in the right pane. (The layout and
presentation are performed by another stage in the
planning process.)

Figure 5. A fragment of a generic plan operator

… …
<operator>
<id>Present0</id>
<description>for composite topics</description>
<effect>(Present ?topic to ?user)</effect>
<constraint>(topic:hasslot ?topic essential)</constraint>
<constraint>(topic:hasslot ?topic normal)</constraint>
<constraint>(not(topic:hasslot ?topic scopeuser))</constraint>
<constraint>(mark name (topic:getslotfiller ?topic name))</constraint>
<nucleus>
 <value>(foreach ?esse (topic:getslotfillers ?topic essential)
 (Present ?esse to ?user))</value>
</nucleus>
<satellite>
 <type>optional</type>
 <relation>background</relation>
 <value>(foreach ?titl (topic:getslotfillers ?topic background)
 (Present ?titl to ?user))</value>
</satellite>
<satellite>
 <type>optional</type>
 <relation>background</relation>
 <value> (foreach ?cont (topic:getslotfillers ?topic context)
 (Present ?cont to ?user))</value>
 </satellite>

 … …
<operator>

5.Discussion and future work
One of the challenges in developing planning

based tailored document generation systems is the
issue of authoring discourse operators. The difficulty
lies in the requirement of several kinds of expertise
simultaneously. To be a competent discourse
operator author, one needs to possess knowledge
about writing, the application domain and
computational linguistics. Consequently, few people
are qualified to be able to write discourse operators.

In this paper, we have presented a novel approach
to specify the plan operators, decoupling the
specification of the structure of the text from the
specification of how to retrieve the data, and
providing an abstract way to specify this structure –
and still being able to produce the discourse tree that
is desirable to perform a number of reasoning tasks
after the content planning stage. In doing so, we
intend to enable people knowledgeable about the
texts required in their domain to be able to specify
these texts, while keeping the advantages of the
discourse planning approach, in particular keeping
the discourse tree structure that enables further
reasoning. This approach is underpinned by three
major constructs, namely, the content structure, the
retrieval table and the generic operators.

The content structure is a document definition
model which needs to be constructed for every new
application. The retrieval table defines retrieval
functions for acquiring information from various data
sources. Having introduced the content structure, we
have developed a finite set of generic operators. With
theses generic operators, discourse tree can be
generated from any domain dependent content
structures. In effect, the issue of discourse operator

authoring is transformed into the issue of content
structure authoring.

To facilitate the task of content structure authoring, we
have built a content structure authoring tool, the
Constructor. While we have demonstrated our approach
by a simple example, we have also discovered some
limitations with our current design. One of the
limitations is that the abstract construct of iteration can
not be handled. However, we believe that that limitation
can be overcome by extending our current modelling
constructs. That is what we would like to look into in our
next step. Furthermore, we would like to extend our
approach to such an extent that it would comfortably
handle all possible cases in discourse trees. Another item
high on our agenda is to evaluate the usability of our
approach.

Acknowledgements We wish to thank other members
of the group, in particular Andrew Lampert and Akshay
Bhurtun.

References
[1] M.K. Campbell, B.M. DeVellis, V.J. Strecher, A.S.

Ammerman, R.F. DeVellis, and R.S. Sandler,
(1994). Improving dietary behavior: The
effectiveness of tailored messages in primary care
settings. American Journal of Public Health,
84:783–787.

[2] N. Colineau, C. Paris and M. Wu (2004). Actionable
Information Delivery. In Revue d’Intelligence
Artificielle (RSTI – RIA), Special Issue on Tailored
Information Delivery, 18(4), 549-576.

[3] N. Colineau and S. Wan (2001). Mobile delivery of
customised information using Natural Language
Generation. In Monitor (Special Issue on Wireless

Figure 6. The main page for the staff overview application

Communication Special), 26(3),
September-November 2001, 27-31.

[4] A. Edmunds and A. Morris. The problem of
information overload in business organisations:
A review of the literature. International Journal
of Information Management, 20(1):17–28,
February 2000.

[5] W.C. Mann and S.A. Thompson “Rhetorical
Structure Theory: Toward a functional theory of
text organisation”, In Text 8 (3), 1988, pp.
243-281.

[6] J. Moore and C. Paris (1993) Planning Text for
Advisory Dialogues: Capturing Intentional and
Rhetorical Information. In Journal of
Computational Linguistics; 19 (4), December
1993. pp 651 - 694.

[7] C. Paris, M. Wu, K. Vander Linden, M. Post and
S. Lu (2004). Myriad: An Architecture for
Contextualized Information Retrieval and
Delivery (2004). In AH2004: International
Conference on Adaptive Hypermedia and
Adaptive Web-based Systems. August 23-26
2004, The Netherlands. pp.205-214.

[8] C. Paris, M. Wu, A-M Vercoustre, S. Wan, P.
Wilkins and R. Wilkinson (2003). An Empirical
Study of the Effect of Coherent and Tailored
Document Delivery as an Interface to
Organizational Websites. In The Proceedings of the
Adaptive Hypermedia Workshop at the 2003 User
Modelling Conference, Pittsburgh, USA, June 22,
2003. pp 133 - 144.

[9] Ehud Reiter. 1995. NLG vs. templates. In
Proceedings of the 5th European Workshop on
Natural Language Generation, Leiden, The
Netherlands.

[10] E Reiter and R Dale (2000) Building Natural
Language Generation Systems. Cambridge
University Press.

[11] C.S. Skinner, V.J. Strecher, and H. Hospers, (1994).
Physicians’ recommendations for
mammography:Do tailored messages make a
difference? American Journal of Public Health,
84:43–49.

[12] V.J. Strecher, M., Kreuter, D.-J. Den Boer, S.
Kobrin, H.J. Hospers, and C.S. Skinner. (1994). The
effects of computer-tailored smoking cessation
messages in family practice settings. The Journal of
Family Practice, 39:262–270.

