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Abstract We propose a machine learning approach, 
using a Maximum Entropy (ME) model to construct a 
Named Entity Recognition (NER) classifier to retrieve 
biomedical names from texts. In experiments, we 
utilize a blend of various linguistic features 
incorporated into the ME model to assign class labels 
and location within an entity sequence, and a post-
processing strategy for corrections to sequences of 
tags to produce a state of the art solution. The 
experimental results on the GENIA corpus achieved 
an F-score of 68.2% for semantic classification of 23 
categories and achieved F-score of 78.1% on 
identification. 
  
Keywords Named Entity Recognition, ME model, 
Information Retrieval. 
 
1 Introduction 
The discovery of the human gene and rapid 
developments in the biomedical domain has produced 
large amounts of genetic data. This has resulted in 
exponential growth of biomedical literature over the 
past few years. MEDLINE, the primary research 
database serving the biomedical community, currently 
contains over 14 million abstracts, with 60,000 new 
abstracts appearing each month. This growth of 
biomedical literature has given rise to a pressing need 
for automatic information extraction from the data 
bank. 
 

Biomedical literature contains a rich set of 
biomedical entities providing key information to 
access the knowledge. A biomedical named entity is a 
word or sequence of words that can be classified as a 
name or biomedical term, such as protein, DNA, RNA, 
etc. Named Entity Recognition is the task of 
identifying and semantically classifying named 
entities in text. In the biomedical domain, the goal of 
the biomedical named entity recognition (BioNER) 
task is to find the biomedical terms such as names of 
genes, proteins, gene products, organisms, drugs, 
chemical compounds etc. in texts and classify them 
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into their correct categories. It is a critical step for 
future automatic processing of biomedical literature to 
be mounted on a large scale, and further to perform 
high level biomedical information extraction task such 
as analysis and question answering.  
 

BioNER consists of two tasks, term identification 
and term classification. Identification finds the region 
of a named entity in a text. Its main goal is to 
differentiate between terms and non-terms without 
looking at the semantic meaning of a term. However 
term classification determines the semantic concept of 
that named entity and assigns it to a biomedical class, 
such as genes, proteins or DNA.  
 

The named entity recognition in the newswire 
domain has been studied for a long time and has 
achieved 90% accuracy [11]. However, named entity 
recognition in biomedical domain has different 
characteristics, with an accuracy of only around 70%. 
Despite the “near human” performance of named 
entity recognition in newswire domain, many similar 
strategies do not work well when adapted into the 
biomedical domain because of the distinctive nature 
of this task Hirschman et al., [5] Tuason et al.,[15] 
Shen et al.,[9] Lin et al., [8] and Lee et al.,[6]. 
 

First, biomedical named entities are not 
conventional proper nouns. They are usually unknown 
words containing uncommon orthographic features 
such as hyphens, digits, letters, and Greek letters. 
Furthermore, there are no conventional rules for 
biomedical term formation.  
 

Second, biomedical terms may have a number of 
spelling variations. For example, the term Alpha UF1 
cells may have spelling variations: Alpha UF-1 cells, 
Uf-1 Alpha cell. Such variations always cause 
recognition ambiguity.  
 

Third, ambiguity and inconsistency are often 
encountered in named entity classification. Many 
named entities with the same orthographical features 
may fall into different categories, for example, nested 
entities of one category may contain an NE of another 
category, or a NE is composed of two NEs from 
different categories. 
 

Fourth, complex naming and abbreviation 



conventions can differ from organism to organism, 
and class to class. Abbreviations tend to be a short 
form and coincide with English words such as “can”, 
“dot”. In addition, the abbreviations are intrinsically 
degenerate forms, so that one abbreviation can have a 
number of meanings, depending on the document 
domain. 
 

Fifth, new named entities are introduced daily as 
new substances are discovered and some existing 
terms might change as our understanding changes. 
The system must be able to recognize new names and 
unseen names, and this causes difficulties in rule 
based systems. 
 

In this paper, we explore machine learning (ML) 
and natural language processing (NLP) techniques to 
recognize biomedical named entities in text. We 
present a strategy that is different to previous work on 
two bases, firstly we use a framework that 
incorporates as many useful linguistic features as 
possible for this recognition task, and secondly we use 
a Maximum Entropy (ME) model as the basis of our 
machine learning system, finally we apply rule-based 
post-processing on the classification results. 
 
2 Related work 
Named Entity Recognition in the biomedical domain 
is more difficult than in a newswire domain because 
of the complex name formation of the biomedical 
terms and our current lack of experience in 
understanding optimal strategies to solve this task. 
Current NER approaches include: dictionary based, 
rule based, machine learning based, and hybrid 
approach. Due to the spelling variation and complex 
naming convention of biomedical terms, NER systems 
that rely on dictionary resources and pre-built rules do 
not seem to perform well, especially for large scale 
tasks. 
 
2.1 Dictionary and rule based approaches 
Early approaches in biomedical named entity 
recognition typically were dictionary-based 
approaches and rule based approaches. These 
approaches use domain specific heuristic rules and 
rely heavily on existing dictionaries, representative 
research includes Krauthammer et al.,[19]; Hirschman 
et al., [5]; Tuason [15]. However, the dictionary-based 
approaches typically perform quite poorly, with 
coverage generally only in the range of 10-30%, even 
allowing for some variability in the form of names. 
The rule-based systems perform well for existing 
named entities, but they usually perform poorly on 
new named entities and it is costly to adapt them to 
new entity classes. Once a new class is introduced, a 
set of new rules has to be generated manually. Since 
there is no standard biomedical term naming 
convention, the rule building process becomes more 
difficult as the number of class increases. Furthermore, 

the rule-based system performs poorly on larger copra, 
Gaizauskas et al., [4] and Fukuda et al., [3]. 
 
2.2 Machine-learning approaches 
The major problem in machine learning based NER 
systems is the lack of training data. Before the GENIA 
corpus 3.0, Kim et al., [20] there was no consistent 
annotated corpus, so researchers used some small-
scale data sets, such as GENIA 1.1 and Bio1. The 
development of GENIA 3.0 which contains 2000 
abstracts provides a standard evaluation data set for 
the machine learning approach. Many other corpora 
that derived from the GENIA corpus have been 
constructed, such as the BioNLP/NLPBA corpus.  
 

The typical machine learning algorithms include 
Naive Bayes (NB), Support Vector Machine (SVM), 
Hidden Markov Model (HMM), Maximum Entropy 
(ME) models, and Conditional Random Fields (CRF). 
Kazama et al. [6] used an SVM to achieve an F-score 
of 54.4 on GENIA 1.1. Nobata and Collier [1] 
incorporated rich features into a hidden Markov 
Model and achieved an F-score of 75.9 on a primary 
version of GENIA, which contains 100 medical 
abstracts, Shen and colleague [9] further enhanced the 
HMM model by exploring some special phenomena 
and a rule based postprocessor. They have achieved 
performance of 66.5 on the GENIA 3.0 corpus. Lin 
and colleagues [8] adapted a maximum entropy model 
for biomedical named entity recognition with a post 
processor, and achieved the performance of an F-score 
of 72.1. Finally CRF have been introduced into this 
field. Settles [10], Tsai et al.,[13] and shown good 
results. (69.9% and 69.8%) on JNLPBA corpus. 

 
A large body of post processing has been 

proposed for biomedical named-entity recognition, 
typical work includes Shen et al., [9], Lin et al., [8], 
Zhou et al., [17]. Shen et al. proposed a rule based 
system for cascaded named entity resolution. They 
automatically extract rules from the training corpus. 
Lin et al., make use of a rule based boundary 
extension strategy combined with dictionary lookup 
for reclassification, and this post-processing 
effectively increases performance by about 20%. 
 
3 Modelling the data 

3.1 GENIA corpus 
The GENIA corpus is an annotated corpus of paper 
abstracts extracted from the MEDLINE database 
using the MeSH query, human, blood cell and 
transcription factor. In the current version 3.02, 2000 
abstracts are annotated by domain experts with entity 
tags. The annotation of the biomedical terms is based 
on the GENIA ontology. The GENIA ontology is a 
taxonomy of 48 biologically relevant categories. In 
our system, we recognize 23 distinct entity classes, 
including Protein, OtherName, DNA, CellType, 



CellLine, OtherOrganicCompound, Lipid, MultiCell, 
Virus, RNA, Tissue, CellComponent, Peptide, 
BodyPart, AminoAcidMonomer, OtherArtificial-
Source, Polynucleotide, MonoCell, Atom, Inorganic, 
Nucleotide, and Carbohydrate. 
 
3.2 Maximum entropy machine learner 
In our experiments, we adapt Zhang Le’s Maximum 
Entropy Tool Kit1. This is a C++ implementation of 
OpenMaxent, which contains Generalized Iterative 
Scaling (GIS) parameter estimation and Gaussian 
Prior Smoothing algorithms.  
 

One advantage of using a maximum entropy 
model is that the features need not be statistically 
independent, and therefore it is easy to incorporate 
features with dependencies. Some of the features used 
in this system are strongly dependent, and yet they do 
not bias the ME model overly much, thus the ME 
models can yield better probability estimates 
compared with some other probability based machine 
learners, such as Hidden Markov Model (HMM) and 
Naïve Bayes classifier. Another advantage of using 
ME model is that it is scalable and does not suffer 
from the data sparseness problem. The training speed 
of ME model is faster than SVM. Although the 
training time is a one-time cost in a real word 
application, however, in prototyping a system, training 
must be fast enough to allow experimentation with 
various configurations.  
 

We use a simple bag of word model to represent 
the language model of the texts hence each token’s 
features are represented by a binary attribute value. 
 

We employ the simplest BIO representation 
which is widely used in named entity recognition 
tasks, for example, Kazama et al. [6]. B means the 
token is at beginning of an NE, I means the token is in 
an NE, and O means the token is not in a named entity. 
For each category C, we have B_C and I_C tags to 
represent the beginning and inside of an NE of that 
category.  

 
4 Feature set 
Machine Learning systems typically represent data in 
terms of a set of features. It is intended that these 
feature sets encode the most significant aspects of the 
data for the learning task. In this section, we describe 
the features we used in our system.  
 
4.1 Orthographical features 
Orthographical features are used to capture the 
rendition of words, such as capitalization, 
digitalisation and punctuation. Orthographic features 
allow strings to be compared based on their spelling 
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characteristics and are widely used in the biomedical 
and newswire domains, such as Shen et al., Collier et 
al., and Tsai et al.,[9,2,13]. 
 

Table 1 presents some orthographic feature used 
in our system. The feature such as AllCaps, for words 
with only capital letters, is useful to identify 
biomedical abbreviations. The CapsAndDigits feature 
is a very strong indicator of entities from Protein, 
DNA and Othername classes. The comma, colon, 
bracket, full stop and stop words are useful for 
detecting the boundaries of named entities. The Greek 
letters and Roman numerals are often used in 
biomedical terms, and the feature of LowercaseOnly 
strongly indicates the non-entity class.  
 
Features Example 
AllCap ALAS, HIV, RIP 
SingleCap B, M, T 
DigitNumbers 7, 8 , 41 
CapsAndDigit CD4, MEK1 
InitCapDigit Am80 
TwoCaps FcR, FasL 
InitCapsLowcase Ras, Crkl, Ctx,  
InitCaps FURa 
LowCapsMix dNTPs, dPRL,  
LowcaseOnly protein, cell 
LetterAndDigit ETh1, h1RaK 
InitDigit 15B7, 17q, 1A9 
Backslash / 
Parenthesis [,], (, ) 
Punctuations ;,:,,,. 
Hypen - 
RomanNumeral I, II, III 
HasHyphen -induced, Eth-1 
GreekLetters Alpha, kappa 
Other Other symbols 

Table 1. Orthographic Features with examples. 
 
4.2 Part of speech feature 
In the newswire domain, the POS features have been 
shown to be of limited use because the POS features 
may adversely interact with the use of some important 
capitalization information [14]. However, POS 
features are widely used in the biomedical domain 
[9,3,13,16], because many biomedical entities are in 
lowercase, and capitalization information in the 
biomedical domain is not as evidential as that in the 
newswire domain. Moreover, since the biomedical 
named entities have many elements, identifying the 
boundaries is a more difficult task. The POS tagging 
can help to determine the boundaries, as for example, 
verbs and prepositions usually indicate a boundary. 
 



In our experiments, each word is assigned a POS 
tag feature. The GENIA POS tagger Tsuruoka et al. 
[14] was used to provide the POS information. The 
GENIA POS tagger is specifically tuned for 
biomedical text such as the MEDLINE abstracts, 
which reported 98.20% accuracy on the GENIA 
corpus.  

 
4.3 Affix features 
The prefix and suffix can provide good clues for 
classifying named entities, and has been widely used 
in Kazama et al.,[6] Zhou et al.,[17] Tsai et al.,[13] 
and Lee et al.,[6]. Kazama et al. collected the 10,000 
most frequent prefixes/suffixes from the training data 
while Zhou et al. construct a prefix/suffix list using a 
statistical method and grouped the prefix/suffix into 
23 categories using a weighted score according to the 
prefix/suffix distributions. 
 

We extracted the affixes from each class of the 
corpus by their diversity and frequency. Frequent and 
diverse affixes may have higher priority to be 
extracted, for example, the suffix ~cyte is usually a 
cell type and the suffix ~lipid is usually a lipid. 
However, short affixes always conflict with common 
English words, for example, the suffix ~ase conflicts 
with English word “disease”. Some common affixes 
have high diversity and frequency in both entity and 
non-entity classes, so they do not contribute to the 
classification, for example, the suffix ~tion. 
 

We extracted the 3500 most frequent prefixes and 
suffixes from the training data, we filter the prefixes 
and suffixes if the root-diversity is less than 5 
(examples in Table 2). 
 
Suffix Class Example 
~nase Protein Kinase 
~hift Othername Shift 

~esis Othername embryogenesis

~ytes CellType leukocytes 
~ycin OtherOrganicComp. rapamycin 
~eria MonoCell Bacteria 
STAT~ Protein STAT1s 
NFAT~ Protein NFAT2 
path~ Othername Pathogenic 
Table 2. Examples of Suffix Features extracted from 

the corpus. 
 
4.4 Unigram named entity feature 
The unigram term is similar to the core-term proposed 
by Fukuda et al., [3] and the single term list in Lee’s 
system [6]. It is a list consisting of all single word 
named entities, such as IL-2, NF-kappaB. These terms 
usually have special surface clues, and appear at the 

leftmost part of an NE. They can be combined with a 
head noun to form a new named entity. We extract all 
unigram named entities from the training corpus, and 
remove them if their frequency is less than 5. 
 
4.5 Head noun feature 
The head noun is usually the major element of a noun 
phrase, which describes the function or the property of 
the named entity. For example, the NF-kappaB 
activation is the head noun for the named entity 
CoCl2-induced NF-kappaB activation. Some previous 
works Nobata et al., [18] and Shen et al., [9] show that 
the head nouns in biomedical named entities can 
provide significant clues for distinguishing the entity 
classes. For example, the term IL-6 kappa B binding 
factor is classified as a Protein, and the L-6 kappa B 
motif is classified as DNA. Hence, the classification is 
determined by the head nouns binding factor and 
motif. 
 

We constructed a head noun list by first looking 
at the rightmost word in a named entity, since the head 
nouns usually are the last noun in the named entities. 
A list of head noun candidates was extracted from 
each named entity class and ranked by frequency, 
because the most frequent nouns can be a good 
predictor for that class. We filter out the head nouns 
with frequency less than 5. Table 3 lists some head 
nouns extracted from the training data. 
 
Class Head nouns 
Protein factor, protein, receptor, complex, 

heterodimer, subunit, kinases, 
calcineurin, selectin, antibody 

Other 
Name 

expression, activity, activation, 
differentiation, apoptosis, 
phosphorylation, production,  
assays, levels 

DNA promoter, site, gene, element,  
chromosome, plasmid, repeat,  
construct, locus 

Cell Type Lymphocyte, monocyte,  
macrophage, neutrophils 

Table 3. Examples of Head Noun Features 
 
4.6 Bi-gram phrase feature 
We extracted all bi-gram noun phrases from the 
entities from the training corpus as a feature. We filter 
the low frequency bi-gram phrases, as we found they 
cause some negative effects. The bi-gram phrase is 
similar to the bi-gram head nouns, except we included 
some high frequency word bi-grams and bi-gram  
 
T cell transcription factor 
gene expression cell line 
virus type human monocytes 
signal transduction Epstein-Barr virus 

Table 4. Examples of bi-gram phrase features. 



named entities. Table 4 lists some high frequency bi-
gram phrases. 
 
4.7 Contextual information 
The contextual information is important for this task. 
The words preceding and following the target words 
are also used as features in our experiments. 
 
5 Post-processing 

5.1 Fixing inconsistent tag sequence 
As we used the B, I, O notation to indicate the 
location of the token within the NE, the system may 
produce an inconsistent class sequence such as “O 
B_Protein I_DNA O”. However, only a consistent 
sequence of tags is annotated as a named entity. We 
identified four types of such inconsistency in 
classifications, and describe rules using regular 
expressions to fix these mistakes. 
 

1. I tag without preceding B tags. These tags are 
mainly due to false positives and partially identified 
terms. Some lower case words that have been seen in 
the named entities are classified as I_OtherName. We 
change this type of invalid I tags into O tags as we 
assumed that fixing these I tags can increase recall to 
a certain degree. Further inconsistencies of a sequence 
of I tags is altered so that the first is a B tag. 
 

2. Missing middle I tag. Some middle I tags are 
classified as O tags, such as “and”, “or”. We change 
these O tags according to the preceding B class or I 
class tag. 
 

3. Inconsistent I tag sequence. The I tag sequence 
in some long entities may be mixed with I tags from 
another class, for example, “O B_DNA I_Protein 
I_DNA O”. We fix this mistake by changing the 
inconsistent I tag class into the B tag class. 
 

4. Inconsistent tag sequence due to nested named 
entity. We found in our experiments, many entities are 
tagged as “O B_C1 I_C1 I_C2 O”, where I_C1 and 
I_C2 are tags from two different categories.  The I_C2 
is usually a head noun and “B_C1 I_C1” is a NE from 
C1. We fix this inconsistency by first checking if I_C2 
is in the head noun list, and then assign the NE a class 
according the head noun’s category. 
 
5.2 Rule based boundary correction 
We found a number of partially identified named 
entities are due to missing the rightmost head nouns or 
the leftmost adjectives. We built from the training data 
a list of head nouns and a list of modifiers that 
frequently appear in the boundaries of a NE. Then we 
designed two simple rules to perform the boundary 
correction which is similar to the boundary extension 
in Lin et al. [8]. 

 
1. NE := NE + headnoun 
2. NE := modifier + NE 

 
After the entity recognition is completed by our 

ME-model and keeping the tag sequences fixed, we 
applied these two rules on recognized named entities 
to expand the boundary to the right and left.  
 
6 Experiments and discussion 
To conduct experiments, we divided the 2000 
abstracts into a training set and test set. The training 
set consisted of 1800 abstracts and the test set 
consisted of 200 abstracts. The performance was 
measured by precision, recall and F-score, which are 
the standard measures for named entity recognition. 
The accuracy is measured by the number of correctly 
recognized named entities.  
 

The main computational cost of the ME model is 
the GIS parameter estimation, which involves 
computation of each observed expectation, and re-
computation of the model’s expectation on each 
iteration. The greater the number of iterations the 
better the training accuracy. Since the number of 
iterations we need for the model to converge to an 
optimal solution is unknown, we ran 2000 iterations 
for each experiment.  The experiment settings are 
shown in Table 5 
 

Training 
(#words)

Testing 
(#words)

Context 
(position) 

Iteration

415,761 43,597 -2,-1,0,1,2 2,000 
Table 5. Experiment configuration. 

 
6.1 The contribution of features 
The task was to investigate the contribution of 
linguistic features to predicting the correct class 
boundaries and labels. Several experiments were 
performed using different combinations of features. 
(Results in Table 6) 
 

The orthographic features (O) are only  
 
  Feature P R F Effect
1 O 0.331  0.197  0.247 
2 O+P 0.408  0.317  0.357 0.110 
3 O+P+HN 0.584  0.549  0.566 0.209 
4 O+P+HN+UE 0.611  0.571  0.590 0.024 
5 O+P+UE+HN+A 0.625  0.589  0.606 0.016 
6 O+P+UE+HN+BP 0.626  0.596  0.611 0.020 
7 O+P+UE+HN+BP+A 0.616  0.585  0.600 -0.011 
8 O+P+UE+HN+ALLBP 0.625  0.588  0.606 -0.005 

Table 6. The contribution of features and the 
progressive effects from adding more features. 



moderately informative, only 4 NE categories are 
recognized in any way. NEs among the minor 
categories cannot be identified and most of the entities 
are classified as Protein, as most have the same 
surface appearance as protein names. The overall F-
score achieved is 0.247. Addition of the POS features 
(P) provides limited information on the classifications. 
It leads to an increase of 0.110 on the F-score. The 
Head noun feature (HN) is very useful and provides a 
positive effect of 0.209 on the F-score compared to 
using simple Orthography plus POS tags. Adding in 
the unigram entity feature (UE) also provides a further 
improvement of 0.024 in F-value. These four features 
(O+P+HN+UE) are the most informative features, so 
if we treat these four features (Exp 4) as a new 
baseline for the remainder of the experiments we can 
discuss each other experiment relative to this baseline. 
 

The Affix features (A) lead to a small positive 
improvement by 0.016 (Exp 5). Adding the bi-gram 
phrase feature (BP) (Exp 6) gives a slight increase in 
F-value (0.020). However combining affix features 
and bi-gram phrase features together (Exp 7) slightly 
degrades the performance by 0.011 and 0.006 
respectively compared with Exp 6 and Exp 5. It may 
be that the affix and bi-gram phrase features carry 
some overlapping information, and contribute to some 
conflict. We assumed that more bi-gram phrase 
features can make more contribution to the 
classification, and performed experiments including 
low frequency bi-gram phrases (Exp 8), and the 
results shows some noise was introduced into 
classification with a slight F-value drop by 0.005. 
 
6.2 Effect of post processing 
The results of post-processing are reported in Table 7. 
Using the best model in the ME classification (Exp 6) 
as the baseline we applied tag changes and boundary 
correction to it. By using method 1 to fix the invalid I 
tags, the precision is degraded by 0.055, but with a 
moderate increase in recall (0.010) and decrease in F-
score by 0.022 (Exp 10). Error analysis shows many 
false positives such as single lower case words. After 
correcting for invalid tag sequences (Exp 11) there is a 
slight increase in F-score (0.012).  Next we used the 
Experiment 3 results as the second baseline on which 
to apply the boundary corrections. 

 
The right boundary correction (Exp 12) further 

increases in F-score by 0.012 and the left boundary 
correction (Exp 13) also has a positive effect of 0.004. 
Applying both left and right boundary corrections 
there is a total increase of 0.015 in F-score. The left 
boundary correction only gives a slight positive effect, 
suggesting that the left boundary is more difficult to 
detect than the right boundary. The results of 
Experiment 15 show that the reclassification 
according to the head nouns has a positive effect on 
performance, improving the overall F-value by 0.044 
compared to experiment 14. 
 

The combined effect of post-processing is very 
effective, improving the performance over the ME 
model baseline by 0.071. 
 
6.3 The Results 
Table 8 shows the precision, recall and F-scores of the 
most populous categories of NE. The Protein class has 
the highest values for precision and recall. This is 
possibly due to proteins being the most frequent entity 
category in the training set. The Othername class is 
the second most frequent category, but it does not 
have a comparably high F-score. This is possibly due 
to the fact that Othername consists of some nested 
named entities which cause overlapping between 
Othername and other categories. Some small 
categories have very low F-score, due to a lack of 
training data. 
 
Category P R F Freq 
Protein 0.739 0.743  0.741  33.07%
OtherName 0.653 0.643  0.648  25.43%
DNA 0.718 0.642  0.678  11.69%
CellType 0.758 0.714  0.735  8.09%
CellLine 0.696 0.640  0.667  5.06%
Lipid 0.654 0.464  0.543  2.26%
Overall 0.700 0.666  0.682  100%

Table 8. Performance of major entity categories. 
 
 

 
Exp. # Processing P R F Effect Baseline

9 Baseline 0.626 0.596 0.611  - - 
10 Change invalid I to B 0.571 0.606 0.588  -0.022  9
11 Fix invalid tag sequence 0.639 0.608 0.623  0.012  9 
12 Right Boundary Correction 0.651 0.619 0.635  0.012  11 
13 Left Boundary Correction  0.643 0.612 0.627  0.004  11 
14 Boundary Correction on both Side 0.655 0.623 0.638  0.015  11 
15 Fix tag sequence according to head nouns 0.700 0.666 0.682  0.044  14 

Table 7. Effect of post-processing 



The partial matching performance and identification 
performance are presented in Table 9 with the 
performance of exact match, left boundary correct, 
right boundary correct and identification only.  
 
Boundary Performance P R F 
Exact match 0.700  0.666 0.682 
Left Boundary 0.722  0.687 0.704 
Right Boundary 0.739  0.703 0.721 
Identification Only 0.802  0.762 0.781 

Table 9. Partial matching and identification 
 

The left boundary and right boundary have a 
higher performance than exact match, by .022 
and .039 respectively in F-score. The results also 
show that the right boundary identification is better 
than left boundary identification. This shows that the 
left boundary is more difficult to detect, probably 
because of the difficulty in determining whether a 
modifier should be included in an NE or not. 
Identification outperforms classification by 0.099 F-
value. 

 
  P R F 
Shen et al.[9] 0.677  0.653  0.665 
Lee et al.[6] 0.718  0.698  0.708 
Zhou et al.[17] 0.727  0.698  0.712 
Lin et al.[8] 0.727  0.715  0.721 
Experimental System 0.700  0.666  0.682 

Table 10. A comparison to other systems 
 

In Table 10 we show a comparison of our results 
to other systems. Although the test data is not exactly 
the same in each system, but for a rough comparison, 
our system achieved a performance close to these 
systems, and our system outperformed Shen’s system 
slightly. Our system reported a relatively high 
boundary identification results, we think this is 
because the unigram entity feature and bi-gram phrase 
feature contributed to improve boundary identification.  
 
6.4 Error analysis 
Large numbers of misclassifications arise between the 
DNA and Protein classes. In the total of misclassified 
words, about 75% of the incorrectly recognized DNA 
terms are classified as Protein. This is due to the high 
overlap between these two classes. Another two 
categories that cause confusion is the CellLine of 
which 72% are incorrectly classified as CellType. 
These kinds of problems will most probably be 
addressed by exploring more contextual information. 
 

Recognition error arises in some hyphen suffixes. 
For example, the entity “AP-1 –binding activity” of 
Othername has been partially recognized as AP-1 
Protein –binding Outside activity Othername. Similar situations 
are confronted with some high frequency hyphen 

suffixes, such as the word “cell-specific”. This 
problem may be solved by a more careful study of 
hyphenated word features. 
 

Abbreviation is another source of 
misclassification.  The orthographic feature cannot 
capture enough information on abbreviations, because 
most abbreviations share the same orthographic 
feature. For example, the name “LPL” of Protein has 
always been recognized as Lipid. 
 

True negatives are almost always identified by 
the feature of LowcaseOnly but are confounded with 
some entities. For example, the phrase “protein 
products” is never correctly labelled by our recognizer. 
These errors might be detected by using a dictionary, 
or exploration of more context information. 
 

Other sources of errors are a number of non-
entity words that are common medical terms classified 
as entities. Some high frequency words, such as stop 
words are incorrectly classified as Othername, as they 
sometimes appear in the composition of long entity 
names, for example, the word “family” and the word 
“and” have often been recognized as NE. 
 
7 Conclusion and future work 
In this paper we have presented a machine learning 
system for recognizing entity classes in biomedical 
abstracts. We have studied various linguistic features 
such as orthography, part of speech, affixes, head 
nouns, unigram terms and bigram phrases. We have 
also used simple rule based methods to correct invalid 
tag sequences and entity boundary errors.  
 

We have achieved close to state of the art 
performance using very simple rule based post-
processing without exploiting dictionaries. Our 
system achieved relatively high performance on 
boundary detection. However, there is still a 10% F-
score gap between the identification performance and 
classification performance. This suggests that we have 
the potential to achieve better performance by looking 
at more informative features for semantic 
classification. In future work we will pursue better 
definitions of phrase forming rules and separate out 
the predictive value of different features for different 
entity types which is clearly shown to be operating in 
the use of the orthographic feature. 
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