25
Hybrid Bitvector |ndex Compression

Alistair Moffat

Department of Computer Science and Software Engineering
The University of Melbourne
Victoria, Australia 3010

alistair@csse.unimelb.edu.au

J. Shane Culpepper

NICTA Victoria Research Laboratory,
Department of Computer Science and Software Engineering
The University of Melbourne
Victoria, Australia 3010

shanec@csse.unimelb.edu.au

Abstract Bitvector index representations provide fastanswers, without any further ranking step being
resolution of conjunctive Boolean queries, but requirapplied.
a great deal of storage space. On the other hand, A wide variety of representations have been devel-
compressed index representations are space-efficienped to store the inverted lists, each of which is a set of
but query evaluation tends to be slower than bitvectodocument pointereepresenting a subset of the integers
evaluation, because of the need for sequential of...n, wheren is the number of documents in the col-
pseudo-random access into the compressed indection. For example, a set gfelements in the range
lists. Here we investigate a simple hybrid mechanisrh. .. n can be stored irf[log, n] bits using a simple bi-
that stores only a small fraction of the inverted listsnary code; and can be stored in approximaj&ly.5 +
as bitvectors and has no or negligible effect orlog,(n/f)) bits if a Golomb or Rice code is applied to
compressed index size compared to the use of bytee set ofd-gap differences between consecutive items
codes, but improves query processing throughpuh the ordered set. Witten et al. [1999] provide details of
compared to both byte coded representations anthese representations. Fortypical document collections,
entirely-bitvector arrangements. in which the majority of terms appear in just a few
de’documents, but the majority of the pointers stored are
for terms that appear in many documents, compressed
representations (of which Golomb and Rice codes are
1 Text search examples) typically save as much_m—SOO/_o of the
space that would be required by a simple binary code.
Document retrieval systems typically make use of an Just as there are different ways in which the
inverted index in order to provide fast keyword-basethverted lists can be stored, there are also different
search, see, for example, Witten et al. [1999] and Zobe&lays in which they can be manipulated in order to
and Moffat [2006]. In such an index, an inverted listcompute intersections. For example, if the inverted
is stored for each term that appears in the collectionists are stored compressed using a Golomb code, and
containing the ordinal identifiers of the documents imo auxiliary information of any kind is maintained,
which that term appears. To process a conjunctiviien the intersection of two lists ¢f < f, elements
Boolean query, the inverted lists corresponding teequiresO(f; + f2) = O(f2) time, since there is
the query terms are fetched from disk, and their seio alternative to sequential decompression of both
intersection computed. Some forms of “ranked” querylists. On the other hand, if the lists are stored using
where the ranking component consists entirely ofhe more space-costly fixed-width binary codes, and
static precomputed score elements such as PageRaimklividual elements can be accessed and inspected
can also be handled the same way — the documeint O(1) time, then set intersection can be computed
collection is permuted so that document identifiersn O(f; log(f2/f1)) time via a search-dual of the
are assigned in decreasing static score order, and th@alomb code, as described by Hwang and Lin [1972].
“top-k ranked queries” are resolved by identifying andOther combinations of representation and intersection
presenting the firsk matching conjunctive Boolean method are discussed by Culpepper and Moffat [2007].
When multiple lists are to be intersected, rather than
just two, another dimension of choice is introduced.
One possibility is to compute the intersection by per-

Keywords Index compression, bitvector, byte co
intersection algorithm.

Proceedings of the 12th Australasian Document Com-
puting Symposium, Melbourne, Australia, December 10,
2007. Copyright for thisarticleremainswith the authors.

forming a sequence of pairwise merges in which the 26
shortest initial list is taken as a “pivot”, and repeatedly
intersected against another of the initial sets, iset
versus setor svs, approach. Any method for the pair-
wise merging of sets can be employed, including the
simple linear-time sequential method. The alternative
is to holistically open all of the sets simultaneously, and
intersect them in an interleaved manner, with a multi-
way operation being used to generate the list of docu-
ment identifiers that appears in every one of the input
lists. In this case, different intersection methods are
possible, includingadaptivevariants that are sensitive
to the interactions between the lists being joined [De-
maine et al., 2000, Barbay et al., 2006].

_Th's pgper despnbes a hybrid bitvector r_epreser]:igure 1. Space versus CPU cost of different ways of
tation for inverted indexes, and shows experimentallyomputing conjunctive Boolean queries using2a Ghz
that it provides fast and compact execution of typicaintel Xeon with2GB of RAM, adapted from Culpepper
conjunctive Boolean queries compared to previous apnd Moffat [2007]. The horizontal axis shows the average

[any

N

[e3)
|

m svs+bc

o]
sy
|

svs+bc+aux, k=1
svs+bc+aux,k=2
svs+bc+aux, k=4

w
N
|

[}
svs+bin+exp
= bvc

Average query time (msec/query)

T T T T
4 8 16 32

Average data used (MB/query)

proaches. per-query data volume required to process a se2nb04
queries; the vertical axis shows the average time taken over
2 Experimenting with intersection the same query set. Each of the marked points represents

a combination of compression technique and intersection

In order to explore different inverted list structuresalgorithm. The point marketbvc makes use of a bitvector
and intersection algorithms, an experimental testbe@presentation and computes intersections using wora-at-
was created in which a stream of conjunctive querie§ne “AND” operations.
was processed against the index of #¥ GB gov2
collection (seecrec.nist.gov). Words that appeared undertaken using the test harness. In that work
only one or twice in the25,205,181-document we were interested in the extent to which a small
collection were assumed to not have their own indexuxiliary index in each inverted list (the annotatiax
lists, and the result was an index fig),783,975 distinct on three of the data points) allowed improved trade-offs
words, with each of those lists containing on averagpetween time and space. The auxiliary index in this
307.6 ordinal document numbers. method was stored uncompressed, and provided a set of

The query stream containe¥,004 queries of av- access points in to the byte coded compressed inverted
erage lengtl2.73 terms extracted from an operationallists, so that the forwards searching operation required
“live” web query stream as being ones that were applisy the svs approach could be supported via pseudo-
cable to the experimental collection, by virtue of theirandom access. A parametewas used to balance the
having a whole-of-web tog-answer (at the time they additional cost of the auxiliary index against the desire
were issued) within thegov domain. Intotal 15,208 to keep the access points close together. Compared
distinct terms appeared in the query set, a very smath a svs method implemented using a binary-coded
fraction of the terms in the collection. Culpepper andndex representation; and compared to $he method
Moffat [2007] give more details of the experimentalwhen the data was stored compressed using standard
arrangements and of the query set. byte codes (annotatidit, and described in more detail

To measure CPU times, the set of index lists rebelow), the auxiliary index approach did indeed offer
quired by the first query in the sequence was read iin interesting compromise between speed (average
to memory while the execution clock was halted; themuery time, on the vertical axis) and space (average
the clock was started and the intersection of those listfata volume processed, on the horizontal axis).
computed five times, to generate an “answer” list of
ordi_nal d(_)cument numbers; then the clock was halteg An interesting observation
again while the data for the second query was fetched;
and so on. At the same time as these “average over fiv¬her interesting point in Figure 1 — and the basis for
times were being recorded, the amount of index dat&€ further exploration that is described in this paper —
(in megabytes) transferred from disk to memory durinds the one markeblvc. A bitvector is a very simple way
query evaluation was noted, and used later to obtain®f Storing a set off elements drawn from a universe
per-query average data volume. All of the experiments- - - 7 with ann-bit array constructed in which thieh
were carried out on a dual8 Ghz Intel Xeon with bitis setif and only ifi is a member of the set. Bitvec-
2 GB of RAM, twelve 146 GB SCSI disks in a RAID-5 tors are a very expensive way of storing sparse sets, in
configuration, and running Debian GNU/Linux. which f < n. On the other hand, they have the redeem-

Figure 1, adapted from Culpepper and Moffatng virtue of providingO(1)-time lookup, meaning that
[2007], summarizes some of the experimentd Set of f; candidate answers can be checked against

100 18,964,349 pointers, and so on. Both axes of the graph 27

are expressed as percentages, but the horizontal axis is
plotted logarithmically.

What is clear from Figure 2 is that a very small frac-
tion of the collection’s terms account for a very large
fraction of the index pointers. Ju8t01% of the terms
account for more thaf0% of the pointers, and if%
of the terms are handled via bitvectors, more thé%
of the pointers in the index are covered.

80

60

40 -

Fraction of pointers (%)

20+

4 A hybrid approach

The use of Golomb and Rice codes provide good com-
pression for typical index data, in no small part because
they are sensitive to the ratif/n (see Witten et al.
Figure 2:Terms versus pointers: a small fraction of thetermJlggg] for a description of the Golomb code). For ex-
in the collection are responsible for the great majorityoét @mple, when more than arousd% of the documents
index pointers. For example, the vertical dotted line imtis 1N @ collection contain some term, the Golomb param-
that approximately50% of the pointers in the index appear €terb that determines the codewords will beand the
in the set of188 inverted lists that each contain more than effect is that of a Unary code. In such a case, the result
25,205,181/8 = 3,150,647 document identifiers. of the coding exercise is a bitvector.
Another standard coding method for index lists (or

a second set of, items in O(f;) time, once then rather,. thg differences between successive values in
bits of the vector have been read. In addition, if twgh€m) is viabyte codesin a byte code, each codeword
bitvectors are to be intersecte’®, or 64 bits at a time 1S @ multiple of eight bits long, so that all of the
can be processed using whole-of-wanb operations. cpdewords consist of an integral number of t_)ytes. T_he

The latter of these two processing modes was usémplest byte code, denoted here, uses a single bit
to generate thevc data point for Figure 1, and it was m_egch bytg of the cgdeword to indicate whether or not
unsurprising that bitvectors provided fast intersectiofflis iS the final byte in the value, and usgsor 14, or
operations. What had not been expected was that tAé: @nd S0 0n, bits to store the integer value in question.
volume of data required to process the queries using'&Singd thebc approach, document pointer differences
bitvector representation was also comparable with tecR€tweenl and2” = 128 are stored in a single byte;
niques that involved compression. Storing a whole indifferences between29 and 27 + 24 = 16,512 are
dex using a bitvector per index term is exorbitantly exStored in two-byte codes; and differences fro513
pensive, approximatefyMB per index list in thegov2 1027 +2'* +2%! = 2,113,664 are stored as three-byte
test collection described above, making a total of nearlgodewords. Scholer et al. [2002] examine the use of
60 TB for the 19 million terms indexed. But the actual Pyte codes in inverted file indexing, and Brisaboa et al.
queries processed tend not to be against sparse 1igg003] and Culpepper and Moffat [2005] describe
Even the two-word queries in our test set typically hadlternative byte codes Wlth. additional properties. .
one word that appeared in 5% or more of the documents A byte code compression scheme was used in the
in the collection, and once the query reached four di¢-@nnotated systems shown in Figure 1. Given that the
more terms, on average one (or more) of the suppligginimum codeword length in any byte codeSisits,
query terms appeared in more than half of the doc@"d thus that a set of elements in the rangé. .. n
ments in the collection [Culpepper and Moffat, 2007]. Must consume at leasyf bits when coded, even after

The bvc point in Figure 1 thus leads to an obvi- differences are taken, it is clear that a bitvector repre-
ous question: is there some compromise arrangemeifntation (in which bits are consumed) is more com-
that avoids the very high disk storage cost of the fulPact than a byte code for any terms for whi€h- n/8.
bitvector index, but retains its efficiency in terms offigure 2 shows that point for thgov2 collection — the
query evaluation speed, and in terms of data volum%as_hed vertical line se_parates the index lists for_wh|c_h
transferred in order to process queries. a bitvector representation must be more economical (_|n

Figure 2 shows why such a hybrid approach i$€rms of storage) from those for which a byte code is
attractive. To construct this graph, the terms of th&10St likely to be the more economical option. As was
gov2 collection were ordered by decreasing documerﬁ'read_y noted, that implies that_ fully half of the p0||_1ters
frequency, and then a cumulative count of pointerd) the index are more economically coded via a bitvec-
calculated, based on that ordering. For example, tH8r than via byte coded differences. _
most frequent term contribute2), 461,040 pointers, Storing the index list for a tern as a bitvector
or 0.33% of the 6,086,023,363 pointers making up Whenever the document frequentyof term¢ satisfies

the index; the second most frequent term adds anothér > /8 will thus reduce the size of a byte coded
inverted index. Itis also possible to allow more than the

T [T 1
le-04 0.01 1 1e+02
Fraction of index terms (%)

. . 28
Method Bitvector ~ Size 5. If there were no byte coded terms, th&nrep-

terms (GB) resents the answer, and is converted into a set of
Byte coded 0 7.41 documentnumbers by locating all of the subscripts
Hybrid, f; > n/8 188 6.97 d for which B[d] = 1.
Hybrid, f; > n/10 277 7.00 i) ,
Hybrid, f, > n/12 367 7.07 6. Otherwise, for eacti € C, if B[d] = 1, thend is
Hybrid, f; > n/16 552 731 output as an answer to the query.

Hybrid, f; > n,/20 775 7.67
Hybrid, f; > n/24 982 8.05
Hybrid, f; > n/32 1,382 8.88

That is, all of the byte coded terms are intersected first;
then, if necessary, all of the bitvector-represented terms
are intersected to get a combined bitvector; and then, if
necessary, the set of candidates indicated by the byte
Table 1:Cost of storing ggov2 index when terms appearing coded terms are checked against the outcome of the

in more than a specified fraction of the documents are storeflitvector merge.
as bitvectors rather than as Byte coded inverted lists. . .
% Processing queries: Method Two

In the second approach to query processing, the bitvec-
?Or terms are incorporated incrementally via a sequence

of storing thegov2 index (19,783,975 terms, and £ ook N t of candidate answers has been
6,086,023,363 pointers) using byte codes alone, anqgstgglishpesd? ce asetofca ate answers has bee

then using a bitvector hybrid approach with different

cutoff fractions. As can be seen, cutoffs as small as1. All query terms are located in the vocabulary.

ft > n/32 still result in agov2 index that is only a

little |arger than the byte coded one, and when the 2. If there are no byte coded terms, then the bitvec-

cutoffisn/16 or less, the index is smaller. tor terms are intersected as in Method One, and
Many of these frequently-occurring terms are ones returned as the answer.

that are, at face value, unhelpful during querying. In-

deed, in the past, they may well have bestopped

to reduce the space consumption of the index, render-

ing the hybrid scheme proposed here somewhat moot.

However, modern retrieval and web search systems in-

dex all words and numbers, with queries such as “to

be or not to be”, “Dr Who”, and “11 September 2001” 4. For each bitvector term, every element still left in

being examples that show why complete coverage is C'is checked against that bitvector, and retained in

necessary. The statistics quoted earlier in connection C only if it appears in that bitvector. tf' becomes

with the test query stream show that common words do empty at any stage, then there are no answers to

minimum number of the inverted lists the flexibility of
using a bitvector. Table 1 shows the cost, in gigabyte

3. Otherwise, the set of terms with byte coded in-
verted lists are intersected using #we approach

to yield a set of candidate answetrs If C be-
comes empty at any stage, then there are no an-
swers to the query, and processing terminates.

indeed occur in typical web search queries. the query, and processing terminates.
Processing queries. Method One 5. When all bitvector terms have been processed,

. L _ _ is the list of answers.
Given the hybrid index, the obvious question now

is how best to use it to resolve conjunctive Boolearmhis method avoids intersecting bitvectors once the
queries. We experimented with two query processingumber of viable candidate answers is small. Instead, it
approaches. In the first, queries are executed #&siilds on the fact that bitvectors support random-access
follows: membership queries, and the fact that it is relatively
cheap to check a small set of candidates against a
1. All query terms are located in the vocabulary. pitvector by direct probing of the relevant bit positions.
That is, when the size of the set of candidatés
Is small, which it almost certainly must be at the
conclusion of the byte coded phase, it should be faster
check individual candidates against each bitvector
an toAND all of the bitvectors terms together.

2. The set of terms with byte coded inverted lists
if any, are intersected using thes approach, to
yield a set of candidate answets If C' becomes
empty at any stage, then there are no answers Eﬁ
the query, and processing terminates.

3. The set of terms with bitvectors, if any, are in-5 Experiments
tersected to get a bitvectdt that represents their

) . We used the same test harness as for our previous ex-
conjunction.

periments [Culpepper and Moffat, 2007], so as to be
4. If there were no bitvector terms, theh can be able to compare results. As was the case in that work,
output as the answer to the query. a set 0f27,004 “real” queries derived from a search log
were executed, and CPU time and data transfer volume
measured on 2.8 Ghz Intel Xeon witt2 GB of RAM.

Number of bc terms

29

= hyb,08
hyb,16
m hyb,32

4 5 6 7 8
Query Length (words)

Figure 3: Fraction of the terms in each query processed using bitvecfor different index construction thresholds. The

upper dashed line shows the total number of terms in the queny the lower dashed line shows half of the terms. When
f+ > n/32, on average half or more of the terms in queries of lengthettalmd greater are processed as bitvectors, either
through whole-of-wordhND operations (Method One), or via direct bit lookups (Methed].

100

Time (msec)

10

bvc

------ svs+bin+exp

= ==-hyb+m1,08
hyb+m1,16

—-=--hyb+m1,32

T T T T
4 5 6 7 8

Query Length (words)

Figure 4:Time to calculate answers to conjunctive queries using aitiysitvector representation, Method One processing,
and three different bitvector cutoffs. The solid black liepresents the pure bitvector approach, and the dottedddlae shows

a puresvs approach using a binary-coded index and exponential seaf¢henf; > n/32 is the threshold point, the hybrid
approach is faster than the pure bitvector approach for efited query lengths.

Time (msec)

100

10 H

bvc

------ svs+hin+exp

= ==-hyb+m2,08
hyb+m2,16

—-=--hyb+m2,32

Query Length (words)

Figure 5:Time to calculate answers to conjunctive queries using aitiyditvector representation, Method Two processing,
and three different bitvector cutoffs. The solid black liepresents the pure bitvector approach, and the dottedddlae shows

a puresvs approach using a binary-coded index and exponential seaftte f; > n/32 hybrid index provides significantly
faster query processing than all other methods tested sacatl query lengths.

Figure 3 provides evidence in support of our 30

hypothesis that the hybrid approach is preferable to
a purely byte coded index. When the queries are
analyzed based on their length in terms, the prevalence
of common terms in queries becomes apparent. For
example, even if as few as52 common terms are
stored as bitvectors rather than as byte coded lists
(denoted in the graph asg/b,16), on average half of
the query terms in queries of five or more words are
stored as bitvectors, and handled more efficiently than
would be the case using a puses+bc approach.
Obviously, the larger the number of common terms
stored as bitvectors, the greater the fraction of any
particular query that is likely to be able to be handled

via b_'tveCtor manipulations.) Figure 6: Space versus CPU cost of different ways of
Figures 4 and 5 show measured querying cost acrogsmputing conjunctive Boolean queries, showing the gain
the range of query lengths in the test sequence, usifigspeed attained by the hybrid bitvector approach (Method
Method One and Method Two processing respectivelfwo). The horizontal axis shows the average per-query data
In both Figure 4 and Figure 5 the solid black refervolume required to process a set 27,004 queries; the
ence line indicates the cost of using a purely bitvecvertical axis shows the average time taken over the same
tor index to process the queries; and the dotted blackiery set. Note the shift in both axes compared to Figure 1.
line shows the speed attained by a binary coded index
andsvs processing using exponential search to skip for6 Related wor k
wards through the lists.
Looking at Figure 4 if the index uses bitvector form

[any

N

o
|

m svs+bc

[e2]
S
|

m svs+bc+aux, k=4

32 hyb+m2,08

]
\ m pyc Svstbintexp

hyb+m2,32

Average query time (msec/query)
o
|

| | T T T
2 4 8 16 32

Average data used (MB/query)

Previous approaches to providing fast Boolean
for terms that satisfyf; > n/32, and a byte coded conmpc'ﬂon n inverted indexes have chused on the
grovision of internal structures to facilitate pseudo-

representation for all other lists, then the Method Onrandom access via skioping or similar arrangements
hybrid approach is always better than the pure bitvect%O ppIng g
{

. K/Ioffat and Zobel, 1996, Strohman and Croft,
approach by a slender margin. Note, however, that t) -
. 07, Culpepper and Moffat, 2007]; or on providing
guery cost does tend to increase as terms are adde

0 ! . : X
the query, and that for long queries an uncompressggmpreSS'on regimes that allow pointers to be skipped
svs mechanism can be faster.

with only partial decompression being necessary [Anh
Figure 5 then shows the additional usefulness Ognd Moffat, 1998, Scholer et al,, 2002, Anh and Moffat,

. . 06]. Other methods for fast intersection — including
Method Two processing. Short queries are handle : . .
. . . _adaptive multi-way approaches — have been described
equally quickly as with Method One, and long queries . :
. e in terms of uncompressed binary representations,
are handled nearly three times faster, within the same !
. o L so that random access operations can be performed
amount of index space. In addition, the hybrid bitvecto

X ; fDemaine et al., 2000, 2001, Barbay and Kenyon,
approach, together with Method Two Processing,noo Gupta et al., 2006, Barbay et al., 2006, Sanders
improves completely on thevs+bc+aux,k=4 method ' > ' ! '

. . . nd Transier, 2007]. Our work here — which, as noted,
described in our previous paper. We also explore@

combining the auxiliary-indexed byte coded lists with[gﬂldse one;a Qngb,jg;f‘g'ggo?fﬁ I\r,]veabzﬁi\\l/gl{[iepﬁr[ﬁr
hybrid bitvectors, but got no additional gain. That is PEPP ’ ')

the auxiliary index of Culpepper and Moffat [2007]‘to fully balance random-access processing of candidate

provides faster (than strictly sequential) processing ginswer documents against frequently occurring terms,

the long inverted lists, but storing them as bitvector¥V'th suitably compressed representations for all terms.

is another — apparently even more efficient — way of)
tapping the same underlying opportunity. 7 Conclusion
Finally, Figure 6 (using the sam&8 Ghz Intel We have shown that a relatively simple combination
Xeon with 2GB of RAM) revisits the speed/data of techniques allows fast calculation of Boolean con-
tradeoff graph that was shown in Figure 1, andunctions within a surprisingly small amount of data
illustrates the improvement attained by the hybridransferred. This approach exploits the observation that
bitvector storage and processing strategies. Methqflieries tend to contain common words, and that repre-
Two, shown in the graph, is faster than Method Onesenting common words via a bitvector allows random
and quite comprehensively outperforms the previougccess testing of candidates, and, if necessary, fast in-
approaches, including thevs+bc+aux auxiliary index tersection operations prior to the list of candidates being
method [Culpepper and Moffat, 2007]. developed. By using bitvectors for a very small number
of terms that (in both documents and in queries) occur
frequently, and byte coded inverted lists for the balance,

we have reduced both querying time and also query- S. Culpepper and A. Moffat. Compact set representation fo 31

time data-transfer volumes. information retrieval. In N. Ziviani and R. Baeza-Yates,

The techniques described here are not, of course, editors,Proceedings of the 14th International Symposium
applicable to other more powerful forms of querying. " String Processing and Information Retrieval (SPIRE
For example, index structures that support phrase and2007) volume 4726 oflLNCS pages 137-148, Santiago,
proximity queries have a much more complex structure, CNile: October 2007. Springer. -URkttp://dx.doi.

)) org/10.1007/978-3-540-75530-2_13.

and are not amenable to storage (in their full form)
using bitvectors. Nevertheless, there may be scogg D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Adaptive
for evaluation regimes that make use of preliminary set intersections, unions, and differences.Ptoceedings
conjunctive filtering before a more detailed index is of the 11th Annual ACM-SIAM Symposium on Discrete
consulted, in which case the structures described hereAlgorithms (SODA 2000pages 743-752, January 2000.

would still l?e relevant. We. pla}n tq eXprLoLe _tdhls. OpthhE' D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Experiments
as we continue our investigation into hybrid bitvector on adaptive set intersections for text retrieval systems. |

structures. Proceedings of the 3rd Workshop on Algorithm Engineer-
ing and Experiments (ALENEX 2001yolume 2153 of
LNCS pages 91-104. Springer, January 2001.

Acknowledgment The query log was supplied by A

Microsoft Search. . Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed

dictionaries: Space measures, data sets, and experiments.
In C. Alvarez and M. J. Serna, editoBroceedings of the
References 5th International Workshop on Experimental Algorithms
V. N. Anh and A. Moffat. Improved word-aligned binary =~ (WEA 2006) volume 4007 ofLNCS pages 158-169.
compression for text indexing. IEEE Transactions on Springer, May 2006.
Knowledge and Data Engineerind.8(6):857-861, June

2006 F. K. Hwang and S. Lin. A simple algorithm for merging two

disjoint linearly ordered listSIAM Journal on Computing
V. N. Anh and A. Moffat. Compressed inverted files with ~ 1:31-39, 1972.
reduced decoding overheads. In W. B. Croft, A. MOﬁat’A Moffat and J. Zobel. Self-indexing inverted files for fast

C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors, .text retrieval. ACM Transactions on Information Systems
Pri ingsof the 21st Annual International ACM SIGIR :
oceedingsof the 21s ual International ACM SIG 14(4):349-379, 1996,

Conference on Research and Development in Information
Retrieval (SIGIR 1998)pages 290297, Melbourne, Aus- p sanders and F. Transier. Intersection in integer ingerte
tralia, August 1998. ACM Press, New York. indices. InProceedings of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX 20Q73ges 71—

J. Barbay and C. Kenyon. Adaptive intersection and 83. SIAM, January 2007.

threshold problems. In D. Eppstein, edit®toceedings
of the 13th Annual ACM-SIAM Symposium on Discret¢ gcholer, H. E. Williams, J. Yiannis, and J. Zobel. Com-
Algorithms (SODA 2002pages 390-399, January 2002. pression of inverted indexes for fast query evaluation.
In M. Beaulieu, R. Baeza-Yates, S. H. Myaeng, and
K. Jarvelin, editors,Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 20023ges
222-229, Tampere, Finland, August 2002. ACM Press,
New York.

J. Barbay, A. Lopez-Ortiz, and T. Lu. Faster adaptive set
intersections for text searching. In Blvarez and M. J.
Serna, editorgExperimental Algorithms, 5th International
Workshop (WEA 2006yolume 4007 o£NCS pages 146—
157. Springer, May 2006.

N. R. Brisaboa, A. _Farllna, G. .N‘"?‘Va”ov and M'. F. EstellerT_ Strohman and W. B. Croft. Efficient document retrieval
(S, C)-dense coding: An optimized compression code for in main memorv. In C. L. A. Clarke. N. Fuhr. N. Kand
natural language text databases. In M. A. Nascimento, W Ka me (?X P d 'V'.) 3'te,§> ‘ ud") ?th o,
editor, Proceedings of the 10th International Symposium 30thr2i21‘u2?Inte'rnétic?nalrfél\/? Sllgllky’r(écc?ri‘elrr;?li:on eRe
on String Processing and Information Retrieval (SPIRE search and Development in Information Retrieval (SIGIR

é?gzsl} éocltLjonk;:rZZ%%Z 0\131. I:liﬁserpages 122-138, Manaus, 2007) pages 175-182, Amsterdam, The Netherlands, July
' - Springer. 2007. ACM Press, New York.

J. S. Culpepper and A. Moffat. Enhanced byte codes with re-) . .)

stricted prefix properties. In M. P. Consens and G. Navarrj; H. Witten, A Moffat, and T A. BellManaging Gigabytes:
.) : . Compressing and Indexing Documents and Imagdésr-

editors,Proceedings of the 12th International Symposium Kauf San E . d edition. 1999
on String Processing and Information Retrieval (SPIRE gan aufmann, san Francisco, second edition, '
2005) yolume 3772 oLNCS§ pages 1-12, Buenos Aires, j zobel and A. Moffat. Inverted files for text search engines
Argentina, November 2005. Springer. URktp://dx. ACM Computing Survey88(2):1-56, 2006.
doi.org/10.1007/11575832_1.

