
Hybrid Bitvector Index Compression

Alistair Moffat
Department of Computer Science and Software Engineering

The University of Melbourne
Victoria, Australia 3010

alistair@csse.unimelb.edu.au

J. Shane Culpepper
NICTA Victoria Research Laboratory,

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria, Australia 3010

shanec@csse.unimelb.edu.au

Abstract Bitvector index representations provide fast
resolution of conjunctive Boolean queries, but require
a great deal of storage space. On the other hand,
compressed index representations are space-efficient,
but query evaluation tends to be slower than bitvector
evaluation, because of the need for sequential or
pseudo-random access into the compressed index
lists. Here we investigate a simple hybrid mechanism
that stores only a small fraction of the inverted lists
as bitvectors and has no or negligible effect on
compressed index size compared to the use of byte
codes, but improves query processing throughput
compared to both byte coded representations and
entirely-bitvector arrangements.

Keywords Index compression, bitvector, byte code,
intersection algorithm.

1 Text search
Document retrieval systems typically make use of an
inverted index in order to provide fast keyword-based
search, see, for example, Witten et al. [1999] and Zobel
and Moffat [2006]. In such an index, an inverted list
is stored for each term that appears in the collection,
containing the ordinal identifiers of the documents in
which that term appears. To process a conjunctive
Boolean query, the inverted lists corresponding to
the query terms are fetched from disk, and their set
intersection computed. Some forms of “ranked” query,
where the ranking component consists entirely of
static precomputed score elements such as PageRank,
can also be handled the same way – the document
collection is permuted so that document identifiers
are assigned in decreasing static score order, and then
“top-k ranked queries” are resolved by identifying and
presenting the firstk matching conjunctive Boolean

Proceedings of the 12th Australasian Document Com-
puting Symposium, Melbourne, Australia, December 10,
2007. Copyright for this article remains with the authors.

answers, without any further ranking step being
applied.

A wide variety of representations have been devel-
oped to store the inverted lists, each of which is a set of
document pointersrepresenting a subset of the integers
1 . . . n, wheren is the number of documents in the col-
lection. For example, a set off elements in the range
1 . . . n can be stored inf⌈log

2
n⌉ bits using a simple bi-

nary code; and can be stored in approximatelyf(1.5 +
log2(n/f)) bits if a Golomb or Rice code is applied to
the set ofd-gap differences between consecutive items
in the ordered set. Witten et al. [1999] provide details of
these representations. For typical document collections,
in which the majority of terms appear in just a few
documents, but the majority of the pointers stored are
for terms that appear in many documents, compressed
representations (of which Golomb and Rice codes are
examples) typically save as much as70–80% of the
space that would be required by a simple binary code.

Just as there are different ways in which the
inverted lists can be stored, there are also different
ways in which they can be manipulated in order to
compute intersections. For example, if the inverted
lists are stored compressed using a Golomb code, and
no auxiliary information of any kind is maintained,
then the intersection of two lists off1 ≤ f2 elements
requiresO(f1 + f2) = O(f2) time, since there is
no alternative to sequential decompression of both
lists. On the other hand, if the lists are stored using
the more space-costly fixed-width binary codes, and
individual elements can be accessed and inspected
in O(1) time, then set intersection can be computed
in O(f1 log(f2/f1)) time via a search-dual of the
Golomb code, as described by Hwang and Lin [1972].
Other combinations of representation and intersection
method are discussed by Culpepper and Moffat [2007].

When multiple lists are to be intersected, rather than
just two, another dimension of choice is introduced.
One possibility is to compute the intersection by per-

25



forming a sequence of pairwise merges in which the
shortest initial list is taken as a “pivot”, and repeatedly
intersected against another of the initial sets, in aset
versus set, or svs, approach. Any method for the pair-
wise merging of sets can be employed, including the
simple linear-time sequential method. The alternative
is to holistically open all of the sets simultaneously, and
intersect them in an interleaved manner, with a multi-
way operation being used to generate the list of docu-
ment identifiers that appears in every one of the input
lists. In this case, different intersection methods are
possible, includingadaptivevariants that are sensitive
to the interactions between the lists being joined [De-
maine et al., 2000, Barbay et al., 2006].

This paper describes a hybrid bitvector represen-
tation for inverted indexes, and shows experimentally
that it provides fast and compact execution of typical
conjunctive Boolean queries compared to previous ap-
proaches.

2 Experimenting with intersection
In order to explore different inverted list structures
and intersection algorithms, an experimental testbed
was created in which a stream of conjunctive queries
was processed against the index of the426GB gov2

collection (seetrec.nist.gov). Words that appeared
only one or twice in the 25,205,181-document
collection were assumed to not have their own index
lists, and the result was an index for19,783,975 distinct
words, with each of those lists containing on average
307.6 ordinal document numbers.

The query stream contained27,004 queries of av-
erage length2.73 terms extracted from an operational
“live” web query stream as being ones that were appli-
cable to the experimental collection, by virtue of their
having a whole-of-web top-3 answer (at the time they
were issued) within the.gov domain. In total,15,208
distinct terms appeared in the query set, a very small
fraction of the terms in the collection. Culpepper and
Moffat [2007] give more details of the experimental
arrangements and of the query set.

To measure CPU times, the set of index lists re-
quired by the first query in the sequence was read in
to memory while the execution clock was halted; then
the clock was started and the intersection of those lists
computed five times, to generate an “answer” list of
ordinal document numbers; then the clock was halted
again while the data for the second query was fetched;
and so on. At the same time as these “average over five”
times were being recorded, the amount of index data
(in megabytes) transferred from disk to memory during
query evaluation was noted, and used later to obtain a
per-query average data volume. All of the experiments
were carried out on a dual2.8 Ghz Intel Xeon with
2 GB of RAM, twelve146 GB SCSI disks in a RAID-5
configuration, and running Debian GNU/Linux.

Figure 1, adapted from Culpepper and Moffat
[2007], summarizes some of the experiments

4 8 16 32

Average data used (MB/query)

32

64

128

A
ve

ra
ge

 q
ue

ry
 ti

m
e 

(m
se

c/
qu

er
y)

 

 svs+bin+exp
 bvc

 svs+bc

 svs+bc+aux,k=1
 svs+bc+aux,k=2

 svs+bc+aux,k=4

Figure 1: Space versus CPU cost of different ways of
computing conjunctive Boolean queries using a2.8 Ghz
Intel Xeon with 2 GB of RAM, adapted from Culpepper
and Moffat [2007]. The horizontal axis shows the average
per-query data volume required to process a set of27,004
queries; the vertical axis shows the average time taken over
the same query set. Each of the marked points represents
a combination of compression technique and intersection
algorithm. The point markedbvc makes use of a bitvector
representation and computes intersections using word-at-a-
time “AND” operations.

undertaken using the test harness. In that work
we were interested in the extent to which a small
auxiliary index in each inverted list (the annotationaux
on three of the data points) allowed improved trade-offs
between time and space. The auxiliary index in this
method was stored uncompressed, and provided a set of
access points in to the byte coded compressed inverted
lists, so that the forwards searching operation required
by the svs approach could be supported via pseudo-
random access. A parameterk was used to balance the
additional cost of the auxiliary index against the desire
to keep the access points close together. Compared
to a svs method implemented using a binary-coded
index representation; and compared to thesvs method
when the data was stored compressed using standard
byte codes (annotationbc, and described in more detail
below), the auxiliary index approach did indeed offer
an interesting compromise between speed (average
query time, on the vertical axis) and space (average
data volume processed, on the horizontal axis).

3 An interesting observation
Another interesting point in Figure 1 – and the basis for
the further exploration that is described in this paper –
is the one markedbvc. A bitvector is a very simple way
of storing a set off elements drawn from a universe
1 . . . n, with ann-bit array constructed in which thei th
bit is set if and only ifi is a member of the set. Bitvec-
tors are a very expensive way of storing sparse sets, in
whichf ≪ n. On the other hand, they have the redeem-
ing virtue of providingO(1)-time lookup, meaning that
a set off1 candidate answers can be checked against

26



1e-04 0.01 1 1e+02

Fraction of index terms (%)

0

20

40

60

80

100

F
ra

ct
io

n 
of

 p
oi

nt
er

s 
(%

)

Figure 2:Terms versus pointers: a small fraction of the terms
in the collection are responsible for the great majority of the
index pointers. For example, the vertical dotted line indicates
that approximately50% of the pointers in the index appear
in the set of188 inverted lists that each contain more than
25,205,181/8 = 3,150,647 document identifiers.

a second set off2 items in O(f1) time, once then
bits of the vector have been read. In addition, if two
bitvectors are to be intersected,32 or 64 bits at a time
can be processed using whole-of-wordAND operations.

The latter of these two processing modes was used
to generate thebvc data point for Figure 1, and it was
unsurprising that bitvectors provided fast intersection
operations. What had not been expected was that the
volume of data required to process the queries using a
bitvector representation was also comparable with tech-
niques that involved compression. Storing a whole in-
dex using a bitvector per index term is exorbitantly ex-
pensive, approximately3 MB per index list in thegov2
test collection described above, making a total of nearly
60 TB for the19 million terms indexed. But the actual
queries processed tend not to be against sparse lists.
Even the two-word queries in our test set typically had
one word that appeared in 5% or more of the documents
in the collection, and once the query reached four or
more terms, on average one (or more) of the supplied
query terms appeared in more than half of the docu-
ments in the collection [Culpepper and Moffat, 2007].

The bvc point in Figure 1 thus leads to an obvi-
ous question: is there some compromise arrangement
that avoids the very high disk storage cost of the full
bitvector index, but retains its efficiency in terms of
query evaluation speed, and in terms of data volume
transferred in order to process queries.

Figure 2 shows why such a hybrid approach is
attractive. To construct this graph, the terms of the
gov2 collection were ordered by decreasing document
frequency, and then a cumulative count of pointers
calculated, based on that ordering. For example, the
most frequent term contributes20,461,040 pointers,
or 0.33% of the 6,086,023,363 pointers making up
the index; the second most frequent term adds another

18,964,349 pointers, and so on. Both axes of the graph
are expressed as percentages, but the horizontal axis is
plotted logarithmically.

What is clear from Figure 2 is that a very small frac-
tion of the collection’s terms account for a very large
fraction of the index pointers. Just0.01% of the terms
account for more than50% of the pointers, and if1%
of the terms are handled via bitvectors, more than90%
of the pointers in the index are covered.

4 A hybrid approach
The use of Golomb and Rice codes provide good com-
pression for typical index data, in no small part because
they are sensitive to the ratiof/n (see Witten et al.
[1999] for a description of the Golomb code). For ex-
ample, when more than around38% of the documents
in a collection contain some term, the Golomb param-
eterb that determines the codewords will be1, and the
effect is that of a Unary code. In such a case, the result
of the coding exercise is a bitvector.

Another standard coding method for index lists (or
rather, the differences between successive values in
them) is viabyte codes. In a byte code, each codeword
is a multiple of eight bits long, so that all of the
codewords consist of an integral number of bytes. The
simplest byte code, denotedbc here, uses a single bit
in each byte of the codeword to indicate whether or not
this is the final byte in the value, and uses7, or 14, or
21, and so on, bits to store the integer value in question.
Using thebc approach, document pointer differences
between1 and27 = 128 are stored in a single byte;
differences between129 and27 + 214 = 16,512 are
stored in two-byte codes; and differences from16,513
to 27 + 214 + 221 = 2,113,664 are stored as three-byte
codewords. Scholer et al. [2002] examine the use of
byte codes in inverted file indexing, and Brisaboa et al.
[2003] and Culpepper and Moffat [2005] describe
alternative byte codes with additional properties.

A byte code compression scheme was used in the
bc-annotated systems shown in Figure 1. Given that the
minimum codeword length in any byte code is8 bits,
and thus that a set off elements in the range1 . . . n
must consume at least8f bits when coded, even after
differences are taken, it is clear that a bitvector repre-
sentation (in whichn bits are consumed) is more com-
pact than a byte code for any terms for whichf > n/8.
Figure 2 shows that point for thegov2 collection – the
dashed vertical line separates the index lists for which
a bitvector representation must be more economical (in
terms of storage) from those for which a byte code is
most likely to be the more economical option. As was
already noted, that implies that fully half of the pointers
in the index are more economically coded via a bitvec-
tor than via byte coded differences.

Storing the index list for a termt as a bitvector
whenever the document frequencyft of termt satisfies
ft > n/8 will thus reduce the size of a byte coded
inverted index. It is also possible to allow more than the

27



Method
Bitvector Size

terms (GB)
Byte coded 0 7.41
Hybrid,ft > n/8 188 6.97
Hybrid,ft > n/10 277 7.00
Hybrid,ft > n/12 367 7.07
Hybrid,ft > n/16 552 7.31
Hybrid,ft > n/20 775 7.67
Hybrid,ft > n/24 982 8.05
Hybrid,ft > n/32 1,382 8.88

Table 1:Cost of storing agov2 index when terms appearing
in more than a specified fraction of the documents are stored
as bitvectors rather than as Byte coded inverted lists.

minimum number of the inverted lists the flexibility of
using a bitvector. Table 1 shows the cost, in gigabytes,
of storing the gov2 index (19,783,975 terms, and
6,086,023,363 pointers) using byte codes alone, and
then using a bitvector hybrid approach with different
cutoff fractions. As can be seen, cutoffs as small as
ft > n/32 still result in agov2 index that is only a
little larger than the byte coded one, and when the
cutoff isn/16 or less, the index is smaller.

Many of these frequently-occurring terms are ones
that are, at face value, unhelpful during querying. In-
deed, in the past, they may well have beenstopped,
to reduce the space consumption of the index, render-
ing the hybrid scheme proposed here somewhat moot.
However, modern retrieval and web search systems in-
dex all words and numbers, with queries such as “to
be or not to be”, “Dr Who”, and “11 September 2001”
being examples that show why complete coverage is
necessary. The statistics quoted earlier in connection
with the test query stream show that common words do
indeed occur in typical web search queries.

Processing queries: Method One
Given the hybrid index, the obvious question now
is how best to use it to resolve conjunctive Boolean
queries. We experimented with two query processing
approaches. In the first, queries are executed as
follows:

1. All query terms are located in the vocabulary.

2. The set of terms with byte coded inverted lists,
if any, are intersected using thesvs approach, to
yield a set of candidate answersC. If C becomes
empty at any stage, then there are no answers to
the query, and processing terminates.

3. The set of terms with bitvectors, if any, are in-
tersected to get a bitvectorB that represents their
conjunction.

4. If there were no bitvector terms, thenC can be
output as the answer to the query.

5. If there were no byte coded terms, thenB rep-
resents the answer, and is converted into a set of
document numbers by locating all of the subscripts
d for whichB[d] = 1.

6. Otherwise, for eachd ∈ C, if B[d] = 1, thend is
output as an answer to the query.

That is, all of the byte coded terms are intersected first;
then, if necessary, all of the bitvector-represented terms
are intersected to get a combined bitvector; and then, if
necessary, the set of candidates indicated by the byte
coded terms are checked against the outcome of the
bitvector merge.

Processing queries: Method Two
In the second approach to query processing, the bitvec-
tor terms are incorporated incrementally via a sequence
of lookups once a set of candidate answers has been
established:

1. All query terms are located in the vocabulary.

2. If there are no byte coded terms, then the bitvec-
tor terms are intersected as in Method One, and
returned as the answer.

3. Otherwise, the set of terms with byte coded in-
verted lists are intersected using thesvs approach
to yield a set of candidate answersC. If C be-
comes empty at any stage, then there are no an-
swers to the query, and processing terminates.

4. For each bitvector term, every element still left in
C is checked against that bitvector, and retained in
C only if it appears in that bitvector. IfC becomes
empty at any stage, then there are no answers to
the query, and processing terminates.

5. When all bitvector terms have been processed,C
is the list of answers.

This method avoids intersecting bitvectors once the
number of viable candidate answers is small. Instead, it
builds on the fact that bitvectors support random-access
membership queries, and the fact that it is relatively
cheap to check a small set of candidates against a
bitvector by direct probing of the relevant bit positions.
That is, when the size of the set of candidatesC
is small, which it almost certainly must be at the
conclusion of the byte coded phase, it should be faster
to check individual candidates against each bitvector
than toAND all of the bitvectors terms together.

5 Experiments
We used the same test harness as for our previous ex-
periments [Culpepper and Moffat, 2007], so as to be
able to compare results. As was the case in that work,
a set of27,004 “real” queries derived from a search log
were executed, and CPU time and data transfer volume
measured on a2.8 Ghz Intel Xeon with2 GB of RAM.

28



2 3 4 5 6 7 8

Query Length (words)

0

2

4

6

8

N
um

be
r 

of
 b

c 
te

rm
s

hyb,08
hyb,16
hyb,32

Figure 3: Fraction of the terms in each query processed using bitvectors, for different index construction thresholds. The
upper dashed line shows the total number of terms in the query; and the lower dashed line shows half of the terms. When
ft > n/32, on average half or more of the terms in queries of length three and greater are processed as bitvectors, either
through whole-of-wordAND operations (Method One), or via direct bit lookups (Method Two).

2 3 4 5 6 7 8

Query Length (words)

10

100

T
im

e 
(m

se
c) bvc

svs+bin+exp
hyb+m1,08
hyb+m1,16
hyb+m1,32

Figure 4:Time to calculate answers to conjunctive queries using a hybrid bitvector representation, Method One processing,
and three different bitvector cutoffs. The solid black linerepresents the pure bitvector approach, and the dotted black line shows
a puresvs approach using a binary-coded index and exponential search. Whenft > n/32 is the threshold point, the hybrid
approach is faster than the pure bitvector approach for all tested query lengths.

2 3 4 5 6 7 8

Query Length (words)

10

100

T
im

e 
(m

se
c) bvc

svs+bin+exp
hyb+m2,08
hyb+m2,16
hyb+m2,32

Figure 5:Time to calculate answers to conjunctive queries using a hybrid bitvector representation, Method Two processing,
and three different bitvector cutoffs. The solid black linerepresents the pure bitvector approach, and the dotted black line shows
a puresvs approach using a binary-coded index and exponential search. Theft > n/32 hybrid index provides significantly
faster query processing than all other methods tested, across all query lengths.

29



Figure 3 provides evidence in support of our
hypothesis that the hybrid approach is preferable to
a purely byte coded index. When the queries are
analyzed based on their length in terms, the prevalence
of common terms in queries becomes apparent. For
example, even if as few as552 common terms are
stored as bitvectors rather than as byte coded lists
(denoted in the graph ashyb,16), on average half of
the query terms in queries of five or more words are
stored as bitvectors, and handled more efficiently than
would be the case using a puresvs+bc approach.
Obviously, the larger the number of common terms
stored as bitvectors, the greater the fraction of any
particular query that is likely to be able to be handled
via bitvector manipulations.

Figures 4 and 5 show measured querying cost across
the range of query lengths in the test sequence, using
Method One and Method Two processing respectively.
In both Figure 4 and Figure 5 the solid black refer-
ence line indicates the cost of using a purely bitvec-
tor index to process the queries; and the dotted black
line shows the speed attained by a binary coded index
andsvs processing using exponential search to skip for-
wards through the lists.

Looking at Figure 4 if the index uses bitvector form
for terms that satisfyft > n/32, and a byte coded
representation for all other lists, then the Method One
hybrid approach is always better than the pure bitvector
approach by a slender margin. Note, however, that the
query cost does tend to increase as terms are added to
the query, and that for long queries an uncompressed
svs mechanism can be faster.

Figure 5 then shows the additional usefulness of
Method Two processing. Short queries are handled
equally quickly as with Method One, and long queries
are handled nearly three times faster, within the same
amount of index space. In addition, the hybrid bitvector
approach, together with Method Two processing,
improves completely on thesvs+bc+aux,k=4 method
described in our previous paper. We also explored
combining the auxiliary-indexed byte coded lists with
hybrid bitvectors, but got no additional gain. That is,
the auxiliary index of Culpepper and Moffat [2007]
provides faster (than strictly sequential) processing of
the long inverted lists, but storing them as bitvectors
is another – apparently even more efficient – way of
tapping the same underlying opportunity.

Finally, Figure 6 (using the same2.8 Ghz Intel
Xeon with 2 GB of RAM) revisits the speed/data
tradeoff graph that was shown in Figure 1, and
illustrates the improvement attained by the hybrid
bitvector storage and processing strategies. Method
Two, shown in the graph, is faster than Method One,
and quite comprehensively outperforms the previous
approaches, including thesvs+bc+aux auxiliary index
method [Culpepper and Moffat, 2007].

2 4 8 16 32

Average data used (MB/query)

16

32

64

128

A
ve

ra
ge

 q
ue

ry
 ti

m
e 

(m
se

c/
qu

er
y)

 

 svs+bin+exp bvc

 svs+bc

 svs+bc+aux,k=4

 hyb+m2,08

 hyb+m2,32

Figure 6: Space versus CPU cost of different ways of
computing conjunctive Boolean queries, showing the gain
in speed attained by the hybrid bitvector approach (Method
Two). The horizontal axis shows the average per-query data
volume required to process a set of27,004 queries; the
vertical axis shows the average time taken over the same
query set. Note the shift in both axes compared to Figure 1.

6 Related work
Previous approaches to providing fast Boolean
conjunction in inverted indexes have focused on the
provision of internal structures to facilitate pseudo-
random access via skipping or similar arrangements
[Moffat and Zobel, 1996, Strohman and Croft,
2007, Culpepper and Moffat, 2007]; or on providing
compression regimes that allow pointers to be skipped
with only partial decompression being necessary [Anh
and Moffat, 1998, Scholer et al., 2002, Anh and Moffat,
2006]. Other methods for fast intersection – including
adaptive multi-way approaches – have been described
in terms of uncompressed binary representations,
so that random access operations can be performed
[Demaine et al., 2000, 2001, Barbay and Kenyon,
2002, Gupta et al., 2006, Barbay et al., 2006, Sanders
and Transier, 2007]. Our work here – which, as noted,
builds on an observation made in a previous paper
[Culpepper and Moffat, 2007] – is, we believe, the first
to fully balance random-access processing of candidate
answer documents against frequently occurring terms,
with suitably compressed representations for all terms.

7 Conclusion
We have shown that a relatively simple combination
of techniques allows fast calculation of Boolean con-
junctions within a surprisingly small amount of data
transferred. This approach exploits the observation that
queries tend to contain common words, and that repre-
senting common words via a bitvector allows random
access testing of candidates, and, if necessary, fast in-
tersection operations prior to the list of candidates being
developed. By using bitvectors for a very small number
of terms that (in both documents and in queries) occur
frequently, and byte coded inverted lists for the balance,

30



we have reduced both querying time and also query-
time data-transfer volumes.

The techniques described here are not, of course,
applicable to other more powerful forms of querying.
For example, index structures that support phrase and
proximity queries have a much more complex structure,
and are not amenable to storage (in their full form)
using bitvectors. Nevertheless, there may be scope
for evaluation regimes that make use of preliminary
conjunctive filtering before a more detailed index is
consulted, in which case the structures described here
would still be relevant. We plan to explore this option
as we continue our investigation into hybrid bitvector
structures.

Acknowledgment The query log was supplied by
Microsoft Search.

References
V. N. Anh and A. Moffat. Improved word-aligned binary

compression for text indexing. IEEE Transactions on
Knowledge and Data Engineering, 18(6):857–861, June
2006.

V. N. Anh and A. Moffat. Compressed inverted files with
reduced decoding overheads. In W. B. Croft, A. Moffat,
C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors,
Proceedingsof the 21st Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR 1998), pages 290–297, Melbourne, Aus-
tralia, August 1998. ACM Press, New York.

J. Barbay and C. Kenyon. Adaptive intersection andt-
threshold problems. In D. Eppstein, editor,Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2002), pages 390–399, January 2002.

J. Barbay, A. López-Ortiz, and T. Lu. Faster adaptive set
intersections for text searching. In C.Àlvarez and M. J.
Serna, editors,Experimental Algorithms, 5th International
Workshop (WEA 2006), volume 4007 ofLNCS, pages 146–
157. Springer, May 2006.

N. R. Brisaboa, A. Fariña, G. Navarro, and M. F. Esteller.
(S, C)-dense coding: An optimized compression code for
natural language text databases. In M. A. Nascimento,
editor, Proceedings of the 10th International Symposium
on String Processing and Information Retrieval (SPIRE
2003), volume 2857 ofLNCS, pages 122–136, Manaus,
Brazil, October 2003. Springer.

J. S. Culpepper and A. Moffat. Enhanced byte codes with re-
stricted prefix properties. In M. P. Consens and G. Navarro,
editors,Proceedings of the 12th International Symposium
on String Processing and Information Retrieval (SPIRE
2005), volume 3772 ofLNCS, pages 1–12, Buenos Aires,
Argentina, November 2005. Springer. URLhttp://dx.
doi.org/10.1007/11575832_1.

J. S. Culpepper and A. Moffat. Compact set representation for
information retrieval. In N. Ziviani and R. Baeza-Yates,
editors,Proceedings of the 14th International Symposium
on String Processing and Information Retrieval (SPIRE
2007), volume 4726 ofLNCS, pages 137–148, Santiago,
Chile, October 2007. Springer. URLhttp://dx.doi.
org/10.1007/978-3-540-75530-2_13.

E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive
set intersections, unions, and differences. InProceedings
of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2000), pages 743–752, January 2000.

E. D. Demaine, A. López-Ortiz, and J. I. Munro. Experiments
on adaptive set intersections for text retrieval systems. In
Proceedings of the 3rd Workshop on Algorithm Engineer-
ing and Experiments (ALENEX 2001), volume 2153 of
LNCS, pages 91–104. Springer, January 2001.

A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed
dictionaries: Space measures, data sets, and experiments.
In C. Àlvarez and M. J. Serna, editors,Proceedings of the
5th International Workshop on Experimental Algorithms
(WEA 2006), volume 4007 ofLNCS, pages 158–169.
Springer, May 2006.

F. K. Hwang and S. Lin. A simple algorithm for merging two
disjoint linearly ordered list.SIAM Journal on Computing,
1:31–39, 1972.

A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval.ACM Transactions on Information Systems,
14(4):349–379, 1996.

P. Sanders and F. Transier. Intersection in integer inverted
indices. InProceedings of the 9th Workshop on Algorithm
Engineering and Experiments (ALENEX 2007), pages 71–
83. SIAM, January 2007.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Com-
pression of inverted indexes for fast query evaluation.
In M. Beaulieu, R. Baeza-Yates, S. H. Myaeng, and
K. Järvelin, editors,Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2002), pages
222–229, Tampere, Finland, August 2002. ACM Press,
New York.

T. Strohman and W. B. Croft. Efficient document retrieval
in main memory. In C. L. A. Clarke, N. Fuhr, N. Kando,
W Kraaij, and A. P. de Vries, editors,Proceedings of the
30th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR
2007), pages 175–182, Amsterdam, The Netherlands, July
2007. ACM Press, New York.

I. H. Witten, A. Moffat, and T. A. Bell.Managing Gigabytes:
Compressing and Indexing Documents and Images. Mor-
gan Kaufmann, San Francisco, second edition, 1999.

J. Zobel and A. Moffat. Inverted files for text search engines.
ACM Computing Surveys, 38(2):1–56, 2006.

31


