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Abstract Rank-biased precision (RBP) is a new
method of information retrieval system evaluation that
takes into account any uncertainty due to incomplete
relevance judgements for a given document and query
set. To do so, RBP uses a model of user persistence.
In this article, we will present a statistical analysis
of the RBP user persistence model to observe how
the user persistence value affects the user persistence
distribution. We also provide a method of fitting data
from existing users to the persistence model, in order to
compute their persistence value. Using the Microsoft
MSN query log, we were able to demonstrate a typical
distribution of the user persistence value and show that
it closely resembles a reverse lognormal distribution,
with a mean of p = 0.78.

Keywords Evaluation, rank-biased precision, persis-
tence distribution

1 Introduction
To evaluate an information retrieval system, the docu-
ments retrieved by the system are compared to a list of
relevance judgements for each (document, query) pair
using some evaluation metric. Therefore, the evaluation
requires manually judging each pair.

As information storage and retrieval algorithms
improve, and computer processing power and storage
grows, so too does the expected number of documents
indexed by a retrieval system. A problem that
is encountered by researchers in the information
retrieval field is the manual judgement of each
(document, query) pair when faced with large
document collections. A simple method of dealing
with these large sets is to manually judge only a subset
of the documents for each query, where the subset
hopefully contains most of the documents relevant to
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that query. When evaluating a system, if a document
is retrieved that was not in the judged set, it can be
assumed irrelevant to the query. Although this method
still provides reliable results, overall accuracy has been
compromised due to uncertainty stemming from the
unjudged documents.

A new method of information retrieval evaluation
called rank-biased precision (RBP) [3] deals with un-
judged documents by offering uncertainty in the evalu-
ation. Therefore, the evaluation score provides a range
covering the evaluation scores that would have been
obtained if the unjudged documents were relevant or
irrelevant.

RBP evaluation is based on a user persistence model
that requires the choice of a user persistence value be-
fore the evaluation can take place. In this article, we
examine the statistical properties of the user persistence
model and the effect of choosing a certain user persis-
tence value. We also examine how we can deduce the
persistence value to suit a desired audience, and hence
model that audience. This article makes the following
contributions:

• a statistical analysis of the properties of the user
persistence model and effect of the user persis-
tence value (p).

• a method of computing the persistence value (p)
from a query log in order to model a set of users

• an analysis showing that the user persistence (p)
is a reverse lognormal distribution when modelled
over a large audience.

The article will proceed as follows: in section 2 we
will discuss the method of rank-biased precision and
its associated user persistence model. In section 3 we
will analyse the user persistence distribution and ex-
amine the effect of changing the user persistence value
(p). Section 4 describes a method of modelling the user
persistence value when given an appropriately detailed
query log. Finally, in section 5 we will examine the
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distribution of the user persistence value (p) computed
from a query log provided by Microsoft.

2 Evaluation of large documents collec-
tions

In this section, we examine a new method of evaluating
retrieval systems called rank-biased precision (RBP)
that allows us to easily account for uncertainty in
relevance judgements. We begin the section by
outlining the method in which relevance judgements
are obtained for large document collections and
examine the problems associated to existing popular
retrieval system metrics that are induced by the
judgement process. We then introduce RBP and show
how it is more suited to dealing with the uncertainty in
modern document collection relevance judgements.

2.1 Obtaining relevance judgements
The ideal method of evaluating a retrieval system is
to obtain a document set, a set of queries and a rele-
vance judgements of every document for each query.
Relevance judgements are assigned to each (document,
query pair) manually, implying that human judges must
examine every document for each query and assign a
relevance score (usually 1 for relevant and 0 for irrel-
evant). Once these scores are obtained, the system in
question is used to rank each document for each query
and the results are compared to the relevance judge-
ments using some pre-defined metric.

Modern retrieval experiments are performed
on document collections containing millions of
documents, so unfortunately, human relevance
judgements are not possible for every (document,
query pair). To obtain an estimate of the most relevant
documents, TREC1 have implemented a pooling
method of document evaluation in an attempt to obtain
the best estimate of relevant documents per query [4].
For each of the retrieval systems taking part in TREC,
the set of top ranked documents for a given query are
placed into a pool. Therefore, the pool for a query will
contain the set of documents that have been highly
ranked by each of the retrieval systems. The pool is
then considered as a set of candidate documents that
should contain most of the documents relevant to each
query. Each of these documents are then manually
judged and the documents that do not appear in the pool
are considered irrelevant to the query. Unfortunately,
the pooling method places great importance on the
initial set of retrieval systems that are used, since any
documents that are not added to the pool (that is, not
highly ranked by any retrieval system) are considered
irrelevant.

2.2 Uncertainty in relevance judgements
Rather than assuming that unjudged documents are ir-
relevant, we should simply take into account this un-
certainty during the system evaluation process. For ex-

1http://trec.nist.gov

ample, if a query retrieves documents that all have as-
sociated relevance judgements, we should be able to
precisely evaluate the system, but if one or more docu-
ments do not have relevance judgements, then the eval-
uation should contain an associated error margin depict-
ing the uncertainty.

Unfortunately, many of the popular information
retrieval metrics do not allow for this uncertainty.
It has been shown that scores produced by retrieval
metrics such as mean average precision (MAP) and
bpref [1] can provide drastically different scores when
uncertainty is introduced due to their dependence
on the number of documents relevant to each query.
Consequently, such metrics are unsuited for handling
uncertainty within the retrieved results in these
instances.

2.3 Rank-biased precision
A new metric called rank-biased precision (RBP) [2, 3]
has been designed to take into account uncertainty in
relevance judgements. RBP has shown to provide error
margins that converge as the uncertainty reduces.

RBP is designed around the model that a user exam-
ining a list of retrieved documents will start from the top
ranked document and when examining each document,
will proceed to the next document with a probability p,
or finish the search with probability 1 − p. The score
provided to the system increases if a user examines a
relevant document, therefore the RBP is computed as
the sum of the probability of examining each relevant
document:

RBP (p) = (1− p)
∞∑

i=1

rip
(i−1) (1)

where ri ∈ [0, 1] is the relevance judgement of the ith
ranked document, and the (1−p) factor is used to scale
the RBP within the range [0, 1]. The probability of a
user examining the next document is also the persis-
tence of the user. We can see that a user with low
persistence (p close to zero) is not likely to examine
past the first document, while a user with a high per-
sistence value (p close to 1) is likely to examine many
documents.

We will now provide an example of how RBP
is used to obtain an intuition of how uncertainty is
dealt with. Given a user with persistence of p = 0.5,
if a given system returns a ranked document list
such that the ranked document have the associated
relevance judgements (1, 1, 0, 1, ?, 0, 0, 1), where
1 denotes relevance, 0 denotes irrelevance and ?
denotes not judged, then the RBP is computed as:
(1 − 0.5) × (0.50 + 0.51 + 0.53 + 0.57) = 0.816.
By taking into account the uncertain relevance
judgements, we can compute the uncertainty in the
RBP as: (1 − 0.5) × (0.54 +

∑∞
i=9 0.5i−1) =

(1 − 0.5) × 0.54 + 0.58 = 0.0352. Implying that the
RBP lies within the bounds [0.816, 0.852], due to the
uncertainty produced by the pooling process. We can
see from these steps that as the number of relevance
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judgements increase, the number of uncertain relevance
judgements decrease and hence the uncertainty in the
RBP decreases.

The RBP metric relies on the user persistence model
and hence on the choice of the user persistence (p). In
the remainder of this article we will examine properties
of this persistence distribution and the effect of p. We
will also examine how to choose p, when given a set of
users’ statistics.

3 The distribution of user persistence
Once a user has received a ranked list of search results,
the typical behaviour is to scan from the top of the list
to the bottom of the list in the hope that a document
relevant to his or her information need is found. If a
document appears to be relevant, based on its title or
snippet, the user will open the document and examine
it further. When the user believes that there will be
no more relevant documents further down the ranked
list, the user will finish examining the list. We can treat
the depth at which the user stops examining the ranked
list as the user’s persistence. For example, a user that
only examines the first two documents will have a low
persistence value, while a user that examines the first
twenty documents will have a higher persistence value.

The rank-biased precision evaluation metric uses
the assumption that a user has a specific persistence
p, which is the probability of examining the next
document in the ranked list. Therefore, if we begin
from the top of the list, the probability of examining
the ith document is:

P (E = i|p) = pi−1 (2)

Given that the probability of examining the next doc-
ument is p, we can deduce that the probability of not
examining further documents to be 1−p. Therefore, the
probability that a user examines the first i documents in
the list but no more is:

P (L = i|p) = pi−1(1− p) (3)

We will now refer to this probabilistic distribution as the
persistence distribution. Figure 1 provides an example
of the persistence distribution for p = 0.5, 0.8 and 0.9.
Throughout this article, we investigate the properties of
the persistence distribution and examine how to select
the persistence value p for a given user population. To
obtain further understanding of the persistence distri-
bution properties, we will derive its mean and variance,
and examine the shape of the distribution.

The mean value of the persistence distribution (or
the expected number of documents examined), derived
in appendix A.1, is:

µL(p) =
1

1− p
(4)

where µL(p) is the expected number of documents ex-
amined before leaving the search list (E[L]), given a
user’s persistence (p).

Persistence (p) µL(p) σL(p)
0 1 0

0.5 2 1.414
0.666 3 2.449
0.75 4 3.464
0.8 5 4.472

0.833 6 5.477
0.857 7 6.481
0.875 8 7.483
0.888 9 8.485

0.9 10 9.487
0.95 20 19.494
0.98 50 49.497
0.99 100 99.499
1.0 ∞ ∞

Table 1: A list of user persistence values (p) and
the associated expected number of pages examined in
a ranked list of search results (µL(p)) and standard
deviation (σL(p)).

The standard deviation (σL(p)) of the persistence
distribution (or the expected difference in the number
of documents examined and the expected number of
documents examined) derived in appendix A.2, is:

σL(p)2 =
p

(1− p)2
(5)

where σL(p)2 is the variance associated to the number
of documents examined before leaving the search list,
when given a user’s persistence (p). Table 1 provides a
list of user persistence values and the associated mean
and standard deviation.

From the equations of mean and standard deviation,
we can see that the standard deviation approaches the
mean as the persistence value approached infinity:

µL(p) = lim
p→∞

σL(p) (6)

This implies that it is harder to predict the number of
pages examined by more persistent users (users who are
expected to examine many documents), due to the high
standard deviation.

4 Modelling user persistence
To examine persistence, we must examine how many
documents a user will examine before leaving the
query.

4.1 Satisfied and unsatisfied queries
When examining the behaviour of a search engine user,
we find that by observing the rank of the final docu-
ment inspected does not necessarily provide us with a
good estimate of the user’s persistence. For example
if a user, who was very persistent, found the relevant
document located at rank one, they would have no rea-
son to examine the list further. On the other hand if a
very persistent user was presented with a list with no
relevant documents, that user would examine many of
the documents in the list. A user with a low persistence
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Figure 1: The persistence distribution for persistence
values, p = 0.5, 0.8 and 0.9 on the first twenty ranked
search results.

value would examine only a few documents, regardless
of the relevance of those documents. So we can see
from this example that if we did not take into account
the relevance of the returned documents, any modelling
would be biased towards a low persistence value.

As an attempt to remove bias caused by a user
who stops examining documents because a relevant
document is found, we split the set of queries into
two. The first set, labelled Unsatisfactory, contains
all of the queries which did not satisfy the user’s
information need before the user’s persistence wore
out. The second set, labelled Satisfactory, contains all
queries where the user found a relevant document and
hence finished scanning the list even though the user’s
persistence had not worn out.

From the Unsatisfactory set, we can find where the
users persistence had run out by observing the last doc-
ument the user examined for each query. We can com-
pute the users persistence by fitting the model in equa-
tion 3, which involves computing the p that provides the
maximum likelihood:

L(p) =
∏
i∈U

pi−1(1− p) (7)

where U is the Unsatisfactory set of queries.
Computing the persistence from the Satisfactory set

is not as simple , since we do not have a measure of
where the user’s persistence ended, and their informa-
tion need was satisfied. The only information we have
is how far down the results list the user examined until
a relevant document was found. Therefore, in order to
compute the persistence, we need to perform survival
analysis.

The survival function shows that probability of an
event occurring after a certain point, in our case it is the

probability of the users persistence wearing out after
the ith document (P (L > i)). To compute the survival
function, we must first compute the cumulative prob-
ability function (P (L ≤ i)). The probability that the
user gives up at or before rank i is:

P (L ≤ i) =
i∑

x=1

px−1(1− p) (8)

= (1− p)
i∑

x=1

px−1 (9)

= (1− p)
(

1− pi

1− p

)
(10)

= 1− pi (11)

Therefore the survival function is:

P (L > i) = 1− P (L ≤ i) (12)

= 1− (1− pi) (13)

= pi (14)

4.2 Maximum likelihood estimation of
persistence

If we assume that for each session (where the user is-
sues one or more queries to the retrieval system), there
is a set of queries that satisfy the user and a set that do
not, then we can compute the persistence of the user
using the likelihood function:

L(p) =
∏
i∈U

P (L = i|p)
∏
j∈S

P (L > i|p) (15)

=
∏
i∈U

pi−1(1− p)
∏
j∈S

pj (16)

where the first product is associated to the set of unsat-
isfactory queries U and the second product is associated
to the set of satisfactory queries S.

Therefore, given a set of queries from a user and the
last document examined for each query, the p associated
to the user provides the maximum value for the likeli-
hood function L(p). To obtain the maximum, we must
find where the derivative of the likelihood function is
zero.

Rather than work with the products in this likeli-
hood function, we are able to work with sums in the
log-likelihood function, since log() is a monotonically
increasing function (shown in appendix B.1):

l(p) = log(L(p)) = log

∏
i∈U

pi−1(1− p)
∏
j∈S

pj


=

∑
i∈U

(i− 1) log (p) +
∑
i∈U

log (1− p)+∑
j∈S

j log (p)
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By differentiating with respect to p, we are able to
locate the turning point of l(p) and hence derive the
equation for the most likely value of the persistence p
(shown in appendix B.2):

p =

∑
i∈U (i− 1) +

∑
j∈S j∑

i∈U∪S i
(17)

where U is the set ranks of final documents examined
in each search when the document was unsatisfactory
to the user’s information need, and S is the set ranks of
final documents examined where the documents were
satisfactory to the user’s information need. Therefore
U ∩ S = ∅, the empty set.

5 Experiments
In the previous section we demonstrated how to model a
set of users based on their usage history. In this section
we use the modelling methods we derived to compute
the persistence values for a set of typical Web search
engine users. We begin by describing the data that is
used and follow with the modelling of the data.

5.1 MSNSearch query log statistics
The Microsoft MSNSearch query log [5] consists of
5,684,599 user sessions, where each session consists
of one or more queries to the Microsoft search engine,
from a particular user. To examine the distribution of
the persistence value across the set of users, we first
must identify each user. Unfortunately, the queries have
been anonymized, therefore we must assume that each
session is associated to a unique user.

Additionally, each query is associated to a set of
clickthrough information, which shows rankings of the
search results that were been clicked on for that query
instance. So for any given query, there may be zero or
many associated clickthroughs.

To model the persistence of individual users, we ob-
tained an estimate of p for each session (correlating to
a unique user) using the maximum likelihood method.
A histogram of the session lengths is shown in figure 2.
We can see from the log scale for frequency, that there
is an exponential decay in the frequency of sessions of
length n as n increases. This implies that there is a very
large proportion of sessions that contain only one query.

5.2 User modelling process
We showed earlier that we are able to compute the max-
imum likelihood estimate of the user persistence (p)
from sampling the rank of lowest ranked document ex-
amined per query. Therefore, to compute a single user’s
persistence from the MSN query log, we must:

• select the the associated session

• compile the set C containing the lowest ranked
clickthrough for each query in the session

• split the set C into the set of unsatisfactory queries
U and satisfactory queries S
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Figure 2: A histogram showing the distribution of query
session lengths, using a log scale for the frequency.
The linearity of the histogram shows that the frequency
decreases exponentially as the session length increases.
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Figure 3: The kernel density estimate of the persis-
tence (p) distribution for all sessions, assuming that all
queries were unsatisfactory.

• use U and S to compute the maximum likelihood
value of the user persistence from equation 17

Once this is done for each user, we are able to plot
the distribution of the fitted persistence values across
all users.

5.3 All queries unsatisfactory
We first examined the distribution of p using the as-
sumption that all of the the queries in each session were
unsatisfactory. The resulting distribution is shown in
figure 3. The distribution shows a large peak at p = 0,
implying that the majority of users examine only the top
ranked document before beginning a new search.

This result maybe an artifact of the many sessions of
length one found in the query logs, where the session
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Figure 4: The kernel density estimate of the persistence
(p) distribution for all sessions, assuming that all but the
last query for the session was unsatisfactory.

shows the user examining only the top ranked docu-
ment.

5.4 Last queries satisfactory
If a user examines only one document and finishes
the session, we have to ask why the user did not issue
another search. We may imply from this that the user
was satisfied with the search results. From this we can
assume that each session is finished with the user being
satisfied with the search results. Therefore, we have
generated a distribution for p where all but the last
queries of each session are unsatisfactory and the last
query is satisfactory. The distribution of p is shown in
figure 4.

We can see that the distribution now has a large
proportion of users with p = 1. We can easily show
that this artifact is also due to the sessions of length
one. If we assume that the last query in each session is
satisfactory, the sessions of length one only contain one
satisfactory query and no unsatisfactory queries. There-
fore the maximum likelihood estimate of p reduces to:

p =
i

i
= 1 (18)

where i is the lowest ranked document examined for the
satisfactory query. With no unsatisfactory queries, we
are unable to compute p, since we have no cases where
the users persistence has worn out. Therefore to obtain
a better estimate of p, we will compute its distribution
using all session of length two or greater. The distri-
bution is shown in figure 5. This figure, we can see in
three large spikes at approximately p = 0.5, 0.66 and
0.75. Amongst these spikes, we can see a smooth curve
following a reverse lognormal distribution that peaks at
around p = 0.9.

To obtain an estimate of p for a user, we need
instances of many issued queries and the resulting last
document examined for each query. Therefore the
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Figure 5: The kernel density estimate of the persistence
(p) distribution for all sessions containing at least two
search attempts, assuming that all but the last query for
the session was unsatisfactory.

Session length Total sessions
> 0 5,684,599
> 1 1,675,949
> 2 679,111
> 3 321,272

Table 2: Total number of sessions in the query log with
a certain session length.

smaller the number of queries per session, the rougher
the estimate of p obtained for the user. By choosing
only those sessions that contain more than n queries,
we will be able to obtain a better estimate of p for
the chosen sessions, but we will also be sampling a
subset of the population. Table 2 shows the number of
sessions used when constrained to a minimum session
lengths.

To examine the effect of using only sessions
of length greater than two and three on the user
persistence, we have provided the distributions for
these data subsets in figures 6 and 7. We can see that as
we increase the session length threshold, the resulting
persistence distribution becomes smoother and
becomes more like a reversed lognormal distribution.
We can also see the large spike that was at 0.5 in
figure 5, move towards p = 0 as we limit our analysis
to longer sessions. This spike is to due to the set of
sessions where the user has clicked on the top ranked
result only, providing a p of 1/session length.

It is interesting to note that the fitted reversed log-
normal distribution provides a mean close to p = 0.78
and standard deviation that provides a 95% confidence
interval of (0.387, 0.920).

6 Conclusion
Rank-biased precision (RBP) is a new method of
information retrieval system evaluation that takes into
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Figure 6: The kernel density estimate of the persistence
(p) distribution for all sessions containing at least three
search attempts, assuming that all but the last query for
the session was unsatisfactory.
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Figure 7: The kernel density estimate of the persistence
(p) distribution for all sessions containing at least four
search attempts, assuming that all but the last query for
the session was unsatisfactory.

account any uncertainty due to incomplete relevance
judgements for a given document and query set. To do
so, RBP uses a model of user persistence.

In this article, we presented a statistical analysis of
the user persistence model to observe how the user per-
sistence value affects the user persistence distribution.
We followed this with a method of modelling the user
persistence value from user statistics.

Using the Microsoft MSN query log, we were able
to demonstrate a typical distribution of the user persis-
tence value and show that it closely resembles a reverse
lognormal distribution, with a mean of p = 0.78.
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A Derivation of the persistence distribu-
tion statistical properties

In this section we derive the mean and variance of the
persistence distribution. To perform the derivations, we
use the equation:

∞∑
i=0

pi =
1

1− p
(19)

A.1 Expected pages examined
The expected number of pages examined is simply the
sum of the page rank times the probability of examining
the page:

E[L] =
∞∑

i=1

ipi−1(1− p)

= (1− p)
∞∑

i=1

ipi−1

= (1− p)
∞∑

i=1

d(pi)
dp

= (1− p)
d(

∑∞
i=1 pi)
dp

= (1− p)
d(

∑∞
i=0 pi − p0)

dp

= (1− p)
d(1/(1− p)− 1)

dp

= (1− p)
1

(1− p)2

=
1

(1− p)
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A.2 Variance of pages examined
The variance is the mean deviation of the pages ex-
amined from the expected number of pages examined.
This can be simplified to:

σ2 = E[L2]− E[L]2 (20)

where σ2 is the variance. Therefore, to compute the
variance, we must first obtain the value of E[L2]:

E[L2] =
∞∑

i=1

i2pi−1(1− p)

= (1− p)
∞∑

i=1

i2pi−1

= (1− p)
∞∑

i=1

[
d2(pi+1)

dp2
− d(pi)

dp

]
= (1− p)

[
d2(

∑∞
i=1 pi+1)
dp2

−
d(

∑∞
i=1 pi)
dp

]
= (1− p)

[
d2(

∑∞
j=2 pj)

dp2
−

d(
∑∞

i=1 pi)
dp

]

= (1− p)

[
d2(

∑∞
j=0 pj − p0 − p1)

dp2
−

d(
∑∞

i=0 pi − p0)
dp

]
= (1− p)

[
d2(1/(1− p)− 1− p)

dp2
−

d(1/(1− p)− 1)
dp

]
= (1− p)

[
d(1/(1− p)2 − 1)

dp
− 1

(1− p)2

]

= (1− p)

[
2

(1− p)3
− 1

(1− p)2

]

=
2

(1− p)2
− 1

(1− p)

where j = i + 1. Using the value of E[L2], we can
compute the variance (σ2) using the mean shown in
appendix A.1:

σ2 = E[L2]− E[L]2

=
2

(1− p)2
− 1

(1− p)
− 1

(1− p)2

=
1

(1− p)2
− 1

(1− p)

=
1

(1− p)2
− 1− p

(1− p)2

=
p

(1− p)2

B Derivation of maximum likelihood
value of persistence

B.1 Simplification of log-likelihood
The log-likelihood function (equation 16) is simplified
using the following process:

l(p) = log(L(p)) = log

∏
i∈U

pi−1(1− p)
∏
j∈S

pj


=

∑
i∈U

log
(
pi−1(1− p)

)
+

∑
j∈S

log
(
pj

)
=

∑
i∈U

log
(
pi−1

)
+

∑
i∈U

log (1− p)+∑
j∈S

log
(
pj

)
=

∑
i∈U

(i− 1) log (p) +
∑
i∈U

log (1− p)+∑
j∈S

j log (p)

B.2 Maximum of log-likelihood function
To obtain the maximum p for the given log-likelihood
function l(p), we must first find the derivative of the
log-likelihood function:

dl(p)
dp

=
∑

i∈U (i− 1)
p

+
∑

i∈U −1
1− p

+

∑
j∈S j

p
(21)

By equating the derivative to zero and solving for p, we
obtain the equation to compute the maximum likelihood
of p:

⇒
∑

i∈U 1
1− p

=

∑
i∈U (i− 1) +

∑
j∈S j

p

p
∑
i∈U

1 = (1− p)

∑
i∈U

(i− 1) +
∑
j∈S

j


p
∑
i∈U

1 + p

∑
i∈U

(i− 1) +
∑
j∈S

j

 =
∑
i∈U

(i− 1) +
∑
j∈S

j

p

∑
i∈U

1 +
∑
i∈U

(i− 1) +
∑
j∈S

j

 =
∑
i∈U

(i− 1) +
∑
j∈S

j

p

∑
i∈U

i +
∑
j∈S

j

 =
∑
i∈U

(i− 1) +
∑
j∈S

j

p
∑

i∈U∪S

i =
∑
i∈U

(i− 1) +
∑
j∈S

j

p =

∑
i∈U (i− 1) +

∑
j∈S j∑

i∈U∪S i
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