Efficient Neighbourhood Estimation for Recommenders with Large
Datasets
Li-Tung Weng",Yue Xu, Yuefeng Li, Richi Nayak
Faulty of Information Technology
Queensland University of Technology
QLD 4001, Australia
“soloman1124@hotmail.com, {yue.xu, y2.li, r.nayak}@qut.edu.au

Abstract In this paper, we present a novel
neighbourhood estimation method which is not only
both memory and computation efficient but can also
achieves better estimation accuracy than other cluster
based neighbourhood formation techniques. In this
paper we have successfully incorporated the proposed
techniqgue with a taxonomy based product
recommender, and with the proposed neighbourhood
formation technique both time efficiency and
recommendation quality of the recommender are
improved.

Keywords Recommender Systems,
Estimation, Product Taxonomy

Neighbourhood

1. Introduction

Our main contribution in this paper is a novel
neighbourhood estimation method called “relative
distance filtering” (RDF), it is based on pre-computing
a small set of relative distances between users, and
using the pre-computed distances to eliminate most
unnecessary similarity comparisons between users.
The proposed RDF method is also capable of dynamic
handling frequent data update; whenever the user
preferences in the dataset are added, deleted or
modified, the pre-computed structure cache can also
be efficiently updated.

In this paper, we applied the proposed RDF
technique to a well-known taxonomy recommender,
namely taxonomy-driven product recommender (TPR),
proposed by Ziegler[1]. TPR utilizes the taxonomy
information of the products to solve the data sparsity
and cold-start problems, and it outperforms standard
collaborative filtering systems with respect to the
recommendation accuracy when producing
recommendations for sites with data sparsity.
However, despite these benefits in TPR, the time
efficiency of TPR drops significantly when dealing
with huge number of users, because the user
preferences in TPR are represented by very high
dimensional vectors. After combining RDF with
TPR, our experiment result shows that both the
accuracy and efficiency of TPR are improved.

2. System Model
We envision a world with a finite set of users

U={uy,u,, .., u,} and a finite set of items T =
{t;,t,, ..., t,n}. For each user u; € U, he or she is
associated with a set of corresponding implicit ratings
R;, where R; € T. Unlike explicit ratings in which
users are asked to supply their perceptions to items
explicitly in a numeric scale, implicit ratings such as
transaction histories, browsing histories, product
mentions, etc., are more common and obtainable for
most e-commerce sites and communities.

The TPR technique proposed by Ziegler[1]
represents user profiles as taxonomy vectors, and the
taxonomy vectors are constructed using users’ implicit
ratings. Next, TPR makes recommendations to a given
target user based on the common opinion of the user’s
neighbourhood. For more information about the
taxonomy vector construction and the TPR technique,
please refer to [1].

3. Proposed Approach

In this paper, we propose a novel neighbourhood
estimation method which is both memory and
computation efficient. By substituting the proposed
technique with the standard “best-n-neighbours” in
TPR, the following two improvements are achieved:
® The computation efficiency of TPR is greatly

improved.
® The recommendation quality of TPR is also

improved as the impact of the “fixed n

neighbours” problem has been reduced. That is,

the proposed technique can help TPR locate the
true neighbours for a given target user (the number

of true neighbours might be smaller than n),

therefore the recommendation quality can be

improved as only these truly closed neighbours of
the target user can be included into the
computation.

3.1. Relative Distance Filtering

Forming neighbourhood for a given user u; € U with
standard “best-n-neighbours” technique involves
computing the distances between u; and all other
users and selecting the top n neighbours with
shortest distances to u;. However, unless the distances
between all users can be pre-computed offline or the
number of users in the dataset is small, forming
neighbourhood dynamically can be an expensive
operation.

92

Clearly, for the standard neighbourhood formation
technique described above, there is a significant
amount of overhead in computing distances for users
that are obviously far away (i.e., dissimilar users). The
performance of the neighbourhood formation can be
drastically improved if we exclude most of these very
dissimilar users from the detailed distance
computation. In the proposed RDF method, this
exclusion or filtering process is achieved with a
simple geometrical implication: if two points are very
close to each other in a space, then their distances to a
given randomly selected point in the space should be
similar.

Figure 1: projected user profiles

In Figure 1, a user set U is projected onto a
two-dimensional plane where each user is depicted as
a dot on the plane. In the figure, u; is the target user,
and the dots embraced by small circles are the top 15
neighbours ofu;. The RDF method starts by randomly
selecting a reference user u, in the user set, and
thenu,’s distances to all other users are computed and
sorted.

Based on the triangle inequality theme, it is easy to
observe that all u;’s neighbours have similar distances
to u,. This means, in the process of formingu;’s
neighbourhood, we only need to compute distances
between u; and the users in set U5 which is defined
as:
where @;denotes the distance from u, to u;.

In equation (1), |a; — ;]| is the difference of the
distances from u; to u, and u; to u,. ¥ is a
distance threshold. If |a; — a;| is larger thand, the
user u; €U can be excluded from the wu;’s
neighbourhood. If 9 is set to a larger value, the
distance threshold is relaxed, thus more users can be
included in the neighbourhood. In this case, the
performance will be decreased because more users
will be included in the actual distance computations.
In our experiment, 9 is set to the one tenth of the
distance between the reference user and its furthest
neighbour u; € U.

By incorporating more than one reference users,
the performance of RDF can be further improved. For
example, by introducing two other reference users u,
and u,, the actually search space can be reduced to

o)

Ug uuj v U;.
3.2. Proposed RDF Implementation

In the RDF implementation, the distances between
users and reference users are computed offline into a
data structure called RDF searching cache, and it will
be loaded into the memory in the initialization stage of
the online recommendation process.

In the searching cache, each user is associated with
a data structure called “user node”. For any user
u; € U,n; denotesu;’s user node. A user node
basically stores two types of information for a user:

1. User ID.

2. Distances to the reference users. The distances
from the user node’s corresponding user to the
reference users are stored in a vector.
implementation, we have only three reference
users u,, upandu,, and therefore the distance
vector for user node n; is (a@;, b;,¢;). We denote
the distance vector of n; as 4; = (A%, 27, A9)
where A¢ corresponds t oa; , A7 corresponds
toEjand Afcorresponds to ¢; respectively.

In our

In order to efficiently retrieve the estimated
searching space as described in equation (1), a binary
tree structure is used to index and sort the user nodes.
The index keys used for each user node are the
distance between the user and the reference users, that
is, the index keys for n; are A¢, 27 and Af. With
the three different index keys, the user nodes can be
efficiently sorted with different index key settings, that
is, the user nodes can be sorted by any one of the three
index keys. An example of RDF searching cache is
shown in Figure 2.

user nodes are sorled and indexed based on
the distances between the corresponding user
vectors and one of the reference users,
usctj'ids
Ifﬂ Hb I!C
(u—{032 [222 [122]
@—l 040 [192 [o055 |
@—I 052 | 492 | 045 |
: : : user node
1O o Bl 7 B 4
Distances between users and
reference users

Figure 2: structure for the RDF searching cache

Given that the RDF searching cache is properly
initialized, the detailed RDF procedure is described
below:

93

RDF Algorithm

1) Let u; be the target user, n be the pre-specified
number of neighbours for u;.

2) Use the indexed tree structure to locate the
minimal user nodes set within the given
boundary:

§=Mjly eV, (x; —9) <A} < (x;+9)}

where u, € {u,, u,, u.} which achieves minimal
search space. Note, the actual implementation of
u, 's computation can be very efficient. By
utilizing the pre-computed searching cache, the
estimation of user nodes size does not involve
looping through the user nodes one by one.

3) Based on step 2, u, is the primary index key
used to sort and retrieve &;, and it is one of u,,
upandu,. The rest two index keys (also in
{uq, up, u}) are denoted as u,, and u,.

4) We refine the searching space ¢; by using
reference users u, and u,.

FOR 1, € §; DO
FA <G —0) or &> (¥ +9) or
AM<(z;—09) or 2> (Z; +9)
THEN remove 7], from &;
5) Do the standard “best- n -neighbours” search

against the estimated searching spaceé;, and
return the result neighbourhood for wu;.

4. Experiments and Evaluation

This section presents empirical results obtained from
our experiment.

4.1. Data Acquisition

The dataset used in this experiment is the
“Book-Crossing” dataset
(http://www.informatik.uni-freiburg.de/~cziegler/BX/),
which contains 278,858 users providing 1,149,780
ratings about 271,379 books. Because the TPR uses
only implicit user ratings, therefore we further
removed all explicit user ratings from the dataset and
kept the remaining 716,109 implicit ratings for the
experiment.

The taxonomy tree and book descriptors for our
experiment are obtained from Amazon.com.
Amazon.com’s book classification taxonomy is
tree-structured (i.e. limited to “single inheritance”)
and therefore is perfectly suitable to TPR.

4.2. Experiment Setup

The goal of our experiment in this paper is to compare
the recommendation performance and computation
efficiency between standard TPR [1] and the
RDF-based TPR proposed in this paper.

The k-folding technique is applied (where k is set
to 5 in our setting) for the recommendation

performance evaluation. With k -folding, every
user u;’s implicit rating list R; is divided into 5 equal
size portions. With these portions, one of them is
selected as u;’s training set R, and the rest 4 portions
are combined into a test set T;* = R;\R". Totally we
have five combinations (R, T;*), 1 <x <5 for user
u;. In the experiment, the recommenders will use the
training set R’ to learn u; ’s interest, and the
recommendation list P* generated for w; will then
be evaluated according to T;*. Moreover, the size for
the neighbourhood formation is set to 20 and the
number of items within each recommendation list is
set to 20 too.

For the computation efficiency evaluation, we
implemented four different versions of TPRs, each of
them is equipped with different neighbourhood
formation algorithms. The four TPR versions are:
® Standard TPR: the neighbourhood formation

method is based on comparing the target user to all

users in the dataset.

® RDF based TPR: the proposed RDF method is
used to find the neighbourhood.

® RTree based TPR: the RTree[2] is used to find the
neighbourhood. RTree is a tree structure based
neighbourhood formation method, and it has been
widely applied in many applications.

® Random TPR: this TPR forms its neighbourhood
with randomly chosen users. It is used as the
baseline for the recommendation quality
evaluation.

The average time required by standard, RTree
based and the RDF based TPRs to make a
recommendation will be compared. We incrementally
increase the number of users in the dataset (from 1000,
2000, 3000 until 14000), and observe how the
computation times are affected by the increments.

4.3. Evaluation Metrics

In this paper, the precision and recall metric is used

for the evaluation of TPR, and its formulas are listed
below:

Recall =100 x (|T* n P*|/|T*)

Precision = 100 X (|T;* n P7*|/|P])

O]
@)

4.4. Result Analysis

Figure 3 shows the performance comparison between
the standard TPR and the proposed RDF based TPR
using the precision and recall metrics. The horizontal
axis for both precision and recall charts indicates the
minimum number of ratings in the user’s profile.
Therefore larger x-coordinates imply that fewer users
are considered for the evaluation. It can be seen from
the result that the proposed RDF based TPR
outperformed standard TPR for both recall and
precision. The result confirms that when the dissimilar
users are removed from the neighbourhood, the
quality of the result recommendations become better.
RTree based TPR performs much worse than both the

94

RDF based TPR and the standard TPR, as it is unable
to accurately allocate neighbours for target users
35

0

%5 E

20 E

Precision

— ROF based TFR
1o —— TFR 1

Fandom TPR
FTree based TPR

1] 10 20 a0 40 1]
hiinimum Required Rating / User

i)

a0l ——— RODF based TPR |

TPR

.7 " I Random TPR

RTree baszed TPR
20t

Recall
>

|

1] 10 20 a0 40 1]
hiinimum Required Rating § Usear

Figure 3: Recommendation precision and recall

The efficiency evaluation is shown in Figure 4.The
time efficiency for standard TPR drops drastically
when the number of users in the dataset increases. For
dataset with 15000 users, the system needs about 14
seconds to produce a recommendation for a user, and
it is not acceptable for most commercial systems. By
comparison, the RDF based TPR is much efficient,
and it only needs less than 4 seconds to produce a
recommendation for dataset with 15000 users. The
RTree based TPR greatly outperforms the proposed
method when the number of users in the dataset is
under 8000. However, as the number of users
increases in the dataset, the differences between RDF
and RTree based TPR becomes smaller, and RDF
starts outperforms RTree when the number of users in
the dataset is over 9000. This is because RTree is only
efficient when the tree level is small. However, as the
tree level increases (i.e. when number of users
increases) RTree’s performance drops drastically
because the chance for high dimensional vector
comparison increases quadratically in accordance to

the number of tree level. The proposed RDF method
outperforms RTree method because its indexing
strategy is single value based, and it reduces the
possibility for the high dimensional vector correlation
computation.

15

—% — ROF based TAR o _G"E
- TRR Y
=——#— R Tree bazed TPR :
10 00 i
3 o
s (O3 o
g RE 5
6]
5l : -
. L
N I
o 9]
4
|:| 1 1 1 1 1
2000 4000 GOOD 8000 10000 12000 14000

no. of users in dataset

Figure 4: Average recommendation time

5. Conclusion

In this paper, we presented a novel neighbourhood
estimation method for recommenders, namely RDF.
By embedding RDF with a TPR based recommender,
not only the computation efficiency of the system is
improved, the recommendation quality is also
improved. The RDF method is different from the
clustering based neighbourhood formation methods
that use offline computed clusters as the
neighbourhoods. Instead, our method forms
neighbourhood for any given target users dynamically
from scratch (thus is more accurate than cluster based
approaches) in an efficient manner.

In our experiment, it is shown that the proposed
method improves both recommendation quality and

computation efficiency for the standard TPR
recommender.
References
[1] C.-N. Ziegler, G. Lausen, and L. Schmidt

Thieme, "Taxonomy-driven Computation of

Product Recommendations” in International
Conference on Information and Knowledge
Management Washington D.C., USA 2004.

[2] Y. Manolopoulos, A. Nanopoulos, A. N.
Papadopoulos, and Y. Theodoridis, R-Trees:

Theory and Applications: Springer, 2005.

95

