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Abstract In this paper, we present a novel 
neighbourhood estimation method which is not only 
both memory and computation efficient but can also 
achieves better estimation accuracy than other cluster 
based neighbourhood formation techniques. In this 
paper we have successfully incorporated the proposed 
technique with a taxonomy based product 
recommender, and with the proposed neighbourhood 
formation technique both time efficiency and 
recommendation quality of the recommender are 
improved.  

Keywords Recommender Systems, Neighbourhood 
Estimation, Product Taxonomy 

1. Introduction 

Our main contribution in this paper is a novel 
neighbourhood estimation method called “relative 
distance filtering” (RDF), it is based on pre-computing 
a small set of relative distances between users, and 
using the pre-computed distances to eliminate most 
unnecessary similarity comparisons between users. 
The proposed RDF method is also capable of dynamic 
handling frequent data update; whenever the user 
preferences in the dataset are added, deleted or 
modified, the pre-computed structure cache can also 
be efficiently updated.  

In this paper, we applied the proposed RDF 
technique to a well-known taxonomy recommender, 
namely taxonomy-driven product recommender (TPR),  
proposed by Ziegler[1]. TPR utilizes the taxonomy 
information of the products to solve the data sparsity 
and cold-start problems, and it outperforms standard 
collaborative filtering systems with respect to the 
recommendation accuracy when producing 
recommendations for sites with data sparsity.   
However, despite these benefits in TPR, the time 
efficiency of TPR drops significantly when dealing 
with huge number of users, because the user 
preferences in TPR are represented by very high 
dimensional vectors.  After combining RDF with 
TPR, our experiment result shows that both the 
accuracy and efficiency of TPR are improved.  

2. System Model 
We envision a world with a finite set of users 

, , … ,  and a finite set of items  
, , … , . For each user , he or she is 

associated with a set of corresponding implicit ratings 
, where . Unlike explicit ratings in which 

users are asked to supply their perceptions to items 
explicitly in a numeric scale, implicit ratings such as 
transaction histories, browsing histories, product 
mentions, etc., are more common and obtainable for 
most e-commerce sites and communities.  

The TPR technique proposed by Ziegler[1] 
represents user profiles as taxonomy vectors, and the 
taxonomy vectors are constructed using users’ implicit 
ratings. Next, TPR makes recommendations to a given 
target user based on the common opinion of the user’s 
neighbourhood. For more information about the 
taxonomy vector construction and the TPR technique, 
please refer to [1].  

3. Proposed Approach 
In this paper, we propose a novel neighbourhood 

estimation method which is both memory and 
computation efficient.  By substituting the proposed 
technique with the standard “best-n-neighbours” in 
TPR, the following two improvements are achieved: 

 The computation efficiency of TPR is greatly 
improved. 

 The recommendation quality of TPR is also 
improved as the impact of the “fixed  
neighbours” problem has been reduced. That is, 
the proposed technique can help TPR locate the 
true neighbours for a given target user (the number 
of true neighbours might be smaller than ), 
therefore the recommendation quality can be 
improved as only these truly closed neighbours of 
the target user can be included into the 
computation.  

3.1. Relative Distance Filtering 
Forming neighbourhood for a given user  with 
standard “best-n-neighbours” technique involves 
computing the distances between  and all other 
users and selecting the top  neighbours with 
shortest distances to . However, unless the distances 
between all users can be pre-computed offline or the 
number of users in the dataset is small, forming 
neighbourhood dynamically can be an expensive 
operation. 
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RDF Algorithm 

1) Let  be the target user,  be the pre-specified 
number of neighbours for . 

2) Use the indexed tree structure to locate the 
minimal user nodes set within the given 
boundary: 

 | ,  

where , ,  which achieves minimal 
search space. Note, the actual implementation of 

’s computation can be very efficient. By 
utilizing the pre-computed searching cache, the 
estimation of user nodes size does not involve 
looping through the user nodes one by one. 

3) Based on step 2,  is the primary index key 
used to sort and retrieve , and it is one of , 

and . The rest two index keys (also in , , ) are denoted as  and . 

4) We refine the searching space  by using 
reference users  and .  

FOR 
 
DO 

IF    or    or 

      or   

          THEN    remove      from     

5) Do the standard “best- -neighbours” search 
against the estimated searching space , and 
return the result neighbourhood for . 

4. Experiments and Evaluation 
This section presents empirical results obtained from 
our experiment.  

4.1. Data Acquisition 
The dataset used in this experiment is the 
“Book-Crossing” dataset 
(http://www.informatik.uni-freiburg.de/~cziegler/BX/), 
which contains 278,858 users providing 1,149,780 
ratings about 271,379 books. Because the TPR uses 
only implicit user ratings, therefore we further 
removed all explicit user ratings from the dataset and 
kept the remaining 716,109 implicit ratings for the 
experiment.  

The taxonomy tree and book descriptors for our 
experiment are obtained from Amazon.com. 
Amazon.com’s book classification taxonomy is 
tree-structured (i.e. limited to “single inheritance”) 
and therefore is perfectly suitable to TPR. 

4.2. Experiment Setup 
The goal of our experiment in this paper is to compare 
the recommendation performance and computation 
efficiency between standard TPR [1]  and the 
RDF-based TPR proposed in this paper. 

The k-folding technique is applied (where  is set 
to 5 in our setting) for the recommendation 

performance evaluation. With -folding, every 
user  ’s implicit rating list    is divided into 5 equal 
size portions. With these portions, one of them is 
selected as  ’s training set , and the rest 4 portions 
are combined into a test set \ . Totally we 
have five combinations , , 1 5 for user 
  . In the experiment, the recommenders will use the 
training set  to learn   ’s interest, and the 
recommendation list  generated for    will then 
be evaluated according to . Moreover, the size for 
the neighbourhood formation is set to 20  and the 
number of items within each recommendation list is 
set to 20 too.  

For the computation efficiency evaluation, we 
implemented four different versions of TPRs, each of 
them is equipped with different neighbourhood 
formation algorithms. The four TPR versions are: 

 Standard TPR: the neighbourhood formation 
method is based on comparing the target user to all 
users in the dataset.   

 RDF based TPR:  the proposed RDF method is 
used to find the neighbourhood.  

 RTree based TPR: the RTree[2] is used to find the 
neighbourhood. RTree is a tree structure based 
neighbourhood formation method, and it has been 
widely applied in many applications.      

 Random TPR: this TPR forms its neighbourhood 
with randomly chosen users. It is used as the 
baseline for the recommendation quality 
evaluation. 
The average time required by standard, RTree 

based and the RDF based TPRs to make a 
recommendation will be compared. We incrementally 
increase the number of users in the dataset (from 1000, 
2000, 3000 until 14000), and observe how the 
computation times are affected by the increments.  

4.3. Evaluation Metrics 
In this paper, the precision and recall metric is used 
for the evaluation of TPR, and its formulas are listed 
below: 

100 | |/| |    (2) 
100 | |/| |    (3) 

 

4.4. Result Analysis 
Figure 3 shows the performance comparison between 
the standard TPR and the proposed RDF based TPR 
using the precision and recall metrics. The horizontal 
axis for both precision and recall charts indicates the 
minimum number of ratings in the user’s profile. 
Therefore larger x-coordinates imply that fewer users 
are considered for the evaluation. It can be seen from 
the result that the proposed RDF based TPR 
outperformed standard TPR for both recall and 
precision. The result confirms that when the dissimilar 
users are removed from the neighbourhood, the 
quality of the result recommendations become better. 
RTree based TPR performs much worse than both the 
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