

ADCS 2008

Proceedings of the Thirteenth Australasian
Document Computing Symposium

8 December 2008

Edited by
Rob McArthur, Paul Thomas, Andrew Turpin and Mingfang Wu

Proceedings of the Thirteenth Australasian Document Computing Symposium

Tasmanian ICT Centre, CSIRO, Hobart, Tasmania
8 December 2008

Published by
School of Computer Science and Information Technology,

RMIT University,
Melbourne VIC 3001, Australia.

Editors

Rob McArthur
Paul Thomas

Andrew Turpin
Mingfang Wu

ISBN: 13978 1 921426 21 6

http://es.csiro.au/adcs2008

ii

Proceedings of the Thirteenth Australasian Document Computing Symposium
Hobart

8 December 2008

Chair’s Preface

These proceedings contain the papers of the Thirteenth Australasian Document Computing
Symposium hosted by the Tasmanian ICT Centre, CSIRO in Hobart, Tasmania.

The two keynote talks, seven long papers and three short papers reflect the breadth of interest
of the Australian research community in the area of document computing. Continuing the
tradition begun in 2007, ADCS is not only collocated with The Australasian Language
Technology Workshop 2008, but we are sharing a paper session, keynote talk, and social
functions with the Australian natural language research community.

The quality of submissions was very high this year. Of the 12 full papers submitted, 8 were
accepted for presentation as full papers (67%), 1 was accepted as a short paper (8%), and 3
were rejected (25%). All of the 3 short papers submitted were accepted (100%).

All submissions received at least two anonymous reviews by experts in the area, while 60% of
the papers received 3 reviews. Dual submissions were explicitly prohibited.

The members of the program committee and extra reviewers deserve special thanks for their
professional reviews all received in the short time required for this ADCS conference.

We would also like to thank Funnelback, CSIRO, NICTA (Victoria) and RMIT School of
Computer Science and IT for their generous sponsorship of the event.

The symposium includes many formal presentations, but perhaps its greatest benefit lies in the
opportunity it provides for document computing practitioners and researchers to get together
and informally share ideas and enthusiasm.

iii

Symposium Co-Chairs

Rob McArthur CSIRO ICT
Mingfang Wu RMIT University

Program co-chairs

Paul Thomas CSIRO ICT
Andrew Turpin RMIT University

Program Committee

Peter Bailey Microsoft Research
Peter Bruza Queensland University of Technology
Bob Colomb University of Technology Malaysia
Stijn Dekeyser University of Southern Queensland
Shlomo Geva Queensland University of Technology
David Hawking Funnelback Pty Ltd
Judy Kay University of Sydney
Robert McArthur CSIRO ICT
Alistair Moffat University of Melbourne
Gitesh K. Raikundalia Victoria University
Falk Scholer RMIT University
Milad Shokouhi Microsoft Research, Cambridge
Amanda Spink Queensland University of Technology
Jamie Thom RMIT University
Andrew Trotman University of Otago
Anh Vo University of Melbourne
Ross Wilkinson CSIRO
William Webber University of Melbourne
Justin Zobel NICTA

Additional Reviewer

Jing He Victoria University

ADCS Advisory Committee

Peter Bruza Queensland University of Technology
Judy Kay The University of Sydney
David Hawking Funnelback
Alistair Moffat The University of Melbourne
Amanda Spink Queensland University of Technology
Ross Wilkinson CSIRO, Canberra
Justin Zobel NICTA

iv

Contents

Chair’s preface . iii

Keynotes

Quo vadis information retrieval research . 1
Kal Järvelin

Syntactic and semantic structure in web search queries . 2
Rosie Jones

Session 1

Term-frequency surrogates in text similarity computations .3
Stefan Pohl and Alistair Moffat

MetaView: Dynamic metadata based views of user files . 11
James Bunton, Judy Kay, and Bob Kummerfeld

On the relevance of documents for semantic representation . 19
Laurianne Sitbon and Peter Bruza

Exploring the benefit of contextual information for boosting TREC Genomic IR performance 23
Bader Aljaber, Nicola Stokes, James Bailey, and Yi Li

WebKnox: Web knowledge extraction . 27
David Urbansky and Jamie Thom

Session 2

Anonymous folksonomies for small enterprise webs: a case study . 35
Tom Rowlands, David Hawking, and Ramesh Sankaranarayana

The effect of using pitch and duration for symbolic music retrieval . 41
Iman S. H. Suyoto and Alexandra L. Uitdenbogerd

Extraction of named entities from tables in gene mutation literature . 49
Wern Wong, David Martinez, and Lawrence Cavedon

Session 3

Facilitating biomedical systematic reviews using ranked text retrieval and classification 53
David Martinez, Sarvnaz Karimi, Lawrence Cavedon, and Timothy Baldwin

Parameter sensitivity in rank-biased precision . 61
Yuye Zhang, Laurence A. F. Park, and Alistair Moffat

Session 4 (joint with ALTW)

Querying linguistic annotations . 69
Sumukh Ghodke and Steven Bird

Using collaboratively constructed document collections to simulate real world object comparisons 73
Karl Grieser, Timothy Baldwin, Fabian Bohnert, and Liz Sonenberg

v

Quo vadis information retrieval research
Kal Järvelin

The talk begins by an analysis of the tradition of IR research based on the TREC approach. The structure of IR

experiments, so characteristic for IR research, is discussed in detail, with IR effectiveness as the dominating dependent

variable. The strengths of the approach in research and in practice are acknowledged. The talk then moves on to pointing

out mounting challenges to IR (evaluation) and IR system development:

• Sometimes there are no articulated information needs preceding information access. The searcher first needs to find

a focus, then develop questions. Is it possible to support the searcher?

• Sometimes there are neither unique questions / queries nor unique right answers. The searchers are individual and

inconsistent throughout. Is it possible to support the searcher?

• Practical IR is often a process, not a single shot at the database, while IR evaluation is by-and-large based on

one-query sessions. IR processes have rarely been sufficiently described in recent times. Therefore they cannot be

understood, properly supported, nor evaluated.

• Practical IR is rarely performed in vacuum at the center of the universe. Rather it is highly integrated with the other

components of the searcher’s information environment. This is unfortunately not reflected in IR evaluation.

• Relevance is dynamic and multidimensional while measured in the opposite way as stable, topical and binary.

Simple measures like searchers’ clicks are increasingly taken as indications of relevance while they are insufficient

and do not reliably predict relevance.

• Searchers’ task performance is independent of IR system effectiveness. People cope with clearly degraded retrieval

systems as well as with better ones. Just their behavior is changed. Are we investing our research efforts optimally?

All this suggests that, in addition to search engine development, IR (experimentation) might be deserving of other

serious foci. These studies might not almost exclusively, and certainly not primarily, focus on search engine effectiveness

as the paramount dependent variable. The talk finishes by discussing a cognitive approach to IR as a way for developing

material theories on information access with more varied designs of dependent and independent variables. It is the author’s

view that, by lifting one’s eyes from the search engine effectiveness fixation, it is readily understood that 80% of the IR

terrain is unmapped, even from the CS viewpoint. Or, if no alternative approaches matter, we might close up shop.

Kal Järvelin is an Academy Professor at the Academy of Finland, working at the Dept. of Information Studies,

University of Tampere. He holds a PhD in Information Studies (1987) from the same university. Kal’s research covers

information seeking and retrieval, database management, and structured documents; and linguistic and conceptual meth-

ods in IR. He has authored over 200 scholarly publications and supervised fourteen doctoral dissertations. Kal has served

the ACM SIGIR Conferences as a program committee member (1992-2005), Conference Chair (2002) and Program Co-

Chair (2004, 2006). He is an Associate Editor of Information Processing and Management (USA).

1

Syntactic and semantic structure in web search queries
Rosie Jones

Traditionally, information retrieval examines the search query in isolation: a query is used to retrieve documents, and

the relevance of the documents returned is evaluated in relation to that query. The query itself is assumed to consist of a

bag of words, without any grammatical structure. However, queries can also be shown to exhibit grammatical structure,

often consisting of telegraphic noun-phrases. In addition, users typically conduct web and other types of searches in

sessions, issuing a query, examining results, and then re-issuing a modified query to improve the results. We describe

the properties of real web search sessions, and show that users conduct searches for both broad and finer grained tasks,

which can be both interleaved and nested. Reformulations reflect many relationships, including synonymy, hypernymy

and hyponomy. We show that user search reformulations can be mined to identify related terms, and that we can identify

the boundaries between tasks with greater accuracy than previous methods.

Rosie Jones is a Senior Research Scientist at Yahoo!. Her research interests include web search, geographic informa-

tion retrieval, and natural language processing. She received her PhD from the School of Computer Science at Carnegie

Mellon University under the supervision of Tom Mitchell. She is co-organizing the WSDM 2009 Workshop on Web

Search Click Data (WSCD09). She served on the Senior PC for SIGIR in 2007 and 2008, and is a Senior Member of the

ACM.

2

Term-Frequency Surrogates in Text Similarity Computations

Stefan Pohl Alistair Moffat
NICTA Victoria Research Laboratory,

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria 3010, Australia

{spohl,alistair}@csse.unimelb.edu.au

Abstract Inverted indexes on external storage
perform best when accesses are ordered and data is
read sequentially, so that seek times are minimized.
As a consequence, the various items required to
compute Boolean, ranked and phrase queries are
often interleaved in the inverted lists. While suitable
for query types in which all items are required, this
arrangement has the drawback that other query
types – notably pure ranked queries and conjunctive
Boolean queries – do not require access to word
position information, and that component of each
posting must be bypassed when these queries are being
handled. In this paper we show that the term frequency
component of each posting can be completely replaced
by a surrogate that allows skipping of positional
information interleaved in inverted lists, and obtain
significant speedups in ranked query execution without
increasing the index size, and without harming
retrieval effectiveness. We also explore two methods
of reconstituting approximations to the original
term frequencies that can be employed if use of
the surrogates is deemed too risky. Our simple
improvement can thus be used with all ranking
functions that make use of term frequencies.

Keywords Information retrieval, inverted index, skip

pointer, proximity query, efficiency, effectiveness.

1 Introduction
Web search is an expensive operation, on which many

millions of dollars are spent each year in terms of com-

puting and energy costs. Small improvements in search

efficiency can thus yield significant monetary savings,

and are of considerable interest to the web search in-

dustry. Users of web search services are fickle, and if

they do not get their results quickly, no matter if their

query is common or rare, and easy or complex, they

will switch their allegiance to a different product.

A significant fraction of the queries in a typical

query log contain phrases. But even without explicitly

specifying phrases in queries, documents are expected

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, December 8, 2008.
Copyright for this article remains with the authors.

to be ranked higher if keywords occur in close

proximity. To support these options, the inverted index

has to store positional information for every word in

every document. To minimize random access costs,

it is common practise to compactly store them in the

inverted lists along with the document numbers and

document statistics in an interleaved fashion.

To rank documents in response to a query, similarity

measures use heuristic computations based on a range

of document statistics, including the overall document

frequency ft of each term t that appears in the collec-

tion, and the number of times fd,t that term t appears

in document d. In this paper we show that the fd,t

component in each posting in the inverted index can be

replaced by a surrogate that allows skipping of the po-

sitional pointers in query modalities in which they are

not required. This substitution significantly improves

query execution speed, and compared to the alternative

option of inserting an additional per-posting skip into

each pointer, both reduces the cost of storing the index

and also the cost of processing it. Because the surrogate

is highly correlated with term frequency, it has only a

marginal effect on retrieval quality, and in some of our

trials, actually improved it. Nevertheless, we have also

evaluated two approximation methods that allow recon-

stitution of a good approximation to the original term

frequencies, to reduce the risk of effectiveness being

eroded. Our simple improvement can thus be used with

all ranking functions that make use of term frequencies.

2 Background
This section provides background information and

introduces the relevant literature.

2.1 Inverted indexes
The inverted index is the most efficient access structure

for fast document retrieval [22]. It consists of a vo-

cabulary, storing the distinct terms t that occur in the

document collection, including information such as ft,

the number of documents containing this term; and a

set of inverted lists, one per term. Each term t in the

vocabulary links to its inverted list, which stores a set

of postings, each of which in turn reflects the occur-

rence of t in a document d. The term frequency fd,t –

3

the number of times term t occurs in document d – is

usually also stored in each posting, which in simplest

form has the structure

〈d, fd,t〉 .

To evaluate a query, each term’s entry is located in the

vocabulary, which is held either completely in memory,

or with the most frequently used portions in memory.

The corresponding inverted lists are then retrieved, and

depending on the query type, combined in some manner

that yields a set of answers.

Different methods can be employed to evaluate

inverted lists: term-at-a-time, which reduces the

number of random accesses to disk [13]; or document-
or impact-at-a-time [2, 17], which are appropriate

if only the correct (or even an approximate) ranking

of the top k documents is required. In the latter two

approaches the inverted lists do not necessarily have

to be completely processed, and the risk of additional

disk seeks is mitigated by reduced processing costs.

Document-level indexes are typically very compact,

and when suitably compressed require just 5–10% of

the space of the text they index [22].

If more complex queries are to be supported, and

similarity measures employed that are based on the

proximity of query terms, word positional information

must also be stored in the index. A direct extension to

the previous posting layout is to include the positions

p1, . . . , pfd,t
of term t in document d in each posting:

〈d, fd,t, p1, . . . , pfd,t
〉 .

Having the positional information immediately

available allows arbitrary position-based operators

to be implemented, independently of the processing

strategy, and can be also advantageous for snippet

generation [18].

2.2 Compression
The space required by an index can be significantly

reduced through compression. If document identifiers

(respectively, term positions) are sorted in increasing

order, the difference between consecutive entries can

be stored instead. These are commonly referred to as

d-gaps for documents, and p-gaps for positions. Be-

cause most d- and p-gaps are smaller than the original

values, they can be stored in fewer bits, saving space.

The drawback of the gap transformation is that the lists

of document and position numbers need to be accessed

sequentially, and it also makes it more difficult to by-

pass the positional component of each pointer if it is

not required.

Different coding schemes for integer values have

been proposed which are able to greatly reduce index

size [22]. Reduction in the amount of data transferred

from disk can also speed up query processing. The

most effective integer coding schemes are bit-based,

and unless care is taken with their implementation,

add a non-trivial overhead to the computational cost

of query processing. As a tradeoff between efficiency

in space and time, the use of byte-aligned codes has

also been suggested. Byte codes typically outperform

bit-aligned compression schemes in terms of decoding

speed, at the cost of a modest loss in compression

effectiveness [15, 20]. In the simplest of byte code

arrangements, one bit is spent to indicate whether or

not the next byte is also part of the codeword for the

current integer. The other seven bits in each byte store

the actual integer value. More complex byte-aligned

schemes have also been proposed [6, 7, 10] that reduce

the amount of compression “leakage” that occurs

compared to bit-aligned codes. Other fast-decoding

methods (including word-aligned codes [3]) have also

been devised, but typically require that the elements

in the stream being compressed be drawn from the

same distribution, which is not the situation when the

components in each posting are interleaved.

Because not all query modes require access to the

position lists, it is desirable to be able to bypass them

in any given posting, and move immediately to the next

posting. If positions are stored uncompressed, bypass

is readily accomplished by stepping over the next fd,t

stored values. But when the p-gaps are compressed

using a variable length code, the natural ability to for-

wards seek over fd,t values is lost, a combination that

means that if the positional components are not required

during querying, each p-gap must be explicitly counted

off. In the simplest byte code, this can be done by

examining the top bit of each byte looking for stopper

bytes, but even this degree of processing is a cost that is

better avoided.

2.3 Index organization
The posting index layout indicated above is not the only

way to store the inverted lists. An important design de-

cision is the choice of where and how to store position

information. There are three distinct alternatives.

Pointer interleaving This straightforward approach,

suggested above, minimizes random accesses costs, as

the lists for the terms in a query can be sequentially

processed using the term-at-a-time strategy. However,

in the case of pure ranked queries, in which the position

information is not needed, the positions are of necessity

still read from disk and accessed in memory, and have

to be bypassed as every pointer is processed. On the

other hand, the storage requirements are minimal, as

there is no overhead incurred through storage of addi-

tional control information.

Term interleaving The positional information can

also be placed into a separate part of each inverted list,

or possibly even into a separate part of the inverted

index. Extra space will then be required to allow

coordination between the postings in the inverted lists,

and their corresponding positions lists, and the space

required by the overall index might approach that of

4

having separate document-level and word-level indexes

side by side. With term interleaving, performance on

ranked queries should be close to that obtainable using

a strictly document-level index; but phrase queries

may execute more slowly than is the case with pointer

interleaving, because of the need to access additional

disk locations to retrieve positional information.

Phrase indexes If phrase queries are the dominant

operation to be supported, additional indexes for

term-pairs can be built [21]. A document-level

index combined with a word-pair index has good

performance for both ranked and phrase queries, but

is limited to these because no position information is

explicitly stored. Another approach is to index only

common phrases [9].

Augmentations There have been several approaches

described for augmented index organizations, in which

internal structures are added within each inverted list to

accelerate either the search for pointers, or to bypass

blocks of pointers.

In the context of document-level indexes, and

conjunctive Boolean and pure ranked queries, Moffat

and Zobel showed that their “skipping” approach

allows significant time savings to be made [14]. The

key part of their proposal was to enlarge the index, and

to at regular intervals insert into each inverted list a

forward pointer, expressed as a bit or byte offset. To

allow decoding to resume after one or more blocks of

postings have been bypassed, the document number

at the destination of each forward pointer is stored

as a gap relative to the document at the start of the

skip, rather than relative to the immediately preceding

posting. A range of similar techniques have been

proposed for other situations, including when the entire

index is being held in main memory [16].

An upper bound for performance improvements

through skipping can be found if the skipped data is

simply not stored. Of course, doing this in regards to

whole postings results in loss of generality, and means

that some queries might not be properly answerable;

nevertheless, this is what is done by static pruning

methods, and is approximated by approaches that

separate the index into two disjoint parts and seek

to resolve queries using only one part [8]. Similarly,

skipping the position lists in a pointer interleaved index

corresponds (at best) to the use of a document-level

index; and the performance differences between

document- and word-level indexes can be large (for

example, see Hawking [12]). In particular, we use a

document-level index as one of the baselines in our

experiments with the pointer-skipping approach that is

described in Section 3.

Horses for courses Systems employing term-at-a-

time evaluation have the advantage that disk accesses

are sequential, and the number of disk seeks is

minimized. On the other hand, processing the inverted

lists of all terms in parallel in pursuing the document-

at-a-time approach simplifies the implementation of

operators such as word adjacency and proximity. Term-

at-a-time systems can also resolve mandatory phrases

in queries in a pre-processing step, and then only

score the documents that pass the phrase or proximity

constraint. This approach avoids having to store

position information temporarily in the term-at-a-time

accumulators for later use. Either way, if the position

information is not pointer-interleaved in the inverted

lists, additional linkages into the index are necessary.

Our contribution Anh and Moffat discuss the

relationship between index structure and query

modes [5], and conclude that pointer-interleaved

indexes are slower than term-interleaved ones.

However, their experiments did not allow for the

possibility that each set of word positions might be

able to be rapidly bypassed, and it is that opportunity

that we consider in this paper. But rather than simply

add skipping information to the index to allow position

list bypass, we replace the fd,t value (which is the

length of the positions list, counted in pointers) by a

surrogate, namely the length bd,t (counted in bytes)

of the compressed positions list. When a byte code

is used, the value of bd,t is never smaller than fd,t

and is usually greater; nevertheless, our proposal is

that bd,t then be used as a surrogate for fd,t in the

ranking formulation. As we shall see, the result of

this simple substitution is that index size is largely

unaffected; retrieval effectiveness is largely unaffected;

and processing speed for ranked queries (assuming a

pointer interleaved index) is greatly improved.

2.4 Effectiveness-efficiency tradeoffs
Important factors determining the cost of a query evalu-

ation are the size of document collections and the length

and difficulty of queries. Consequently, improvements

are promising to achieve if the number of (full or even

partial) document evaluations can be reduced. A con-

stant theme has thus been methods for trading (a hope-

ful small loss of) retrieval effectiveness for (a hopefully

large gain in) retrieval efficiency.

Heuristic ranking algorithms can be categorized by

their effect on the results, compared to full, exhaustive,

evaluation. The least intrusive optimizations are those

that guarantee to produce identical results, that is, the

same set of k top scoring documents, along with the

same final similarity scores. Documents not in the top

k might be scored differently.

The next fidelity level is a requirement that the top

k documents be correct, and that they be in the cor-

rect score ordering, but that the scores not be faithful

compared with exhaustive evaluation. This level of ap-

proximation is completely acceptable if, for example,

the users of a system see the answer rankings, but not

the scores. In this case even top-ranked documents may

not need to be fully evaluated.

The third category includes methods that guarantee

that the right documents will appear in the top k, but not

5

that they appear in the right order. That is, the split be-

tween “shown to the user” and “not shown to the user”

is correct, but the ranking might not be. Weakening

the fidelity criterion allows additional short-circuiting

of the similarity computation.

The last category consists of algorithms that pro-

duce rankings that are experimentally similar to those

of the underlying exhaustive computation, but cannot

be guaranteed in any way. This kind of approach is also

of interest to system developers, since similarity func-

tions are themselves heuristics, and there is no guaran-

tee that slavishly executing any particular computation

in full detail does in fact give the best possible retrieval

effectiveness. A simpler and more succinct computa-

tion might do just as well in practice.

The restricted accumulator methods that can be

used with term-at-a-time evaluation of ranked queries

are examples of this final approach. The accumulators

store intermediate results for each document, and

represent partially evaluated similarity scores. Moffat

and Zobel [14] proposed methods for limiting the

number of active accumulators, saving on per-query

memory costs, and also allowing the skipping pointers

to gain additional traction. Many similar dynamic

pruning approaches have been developed, including

ones that make use of impact-sorted indexes in which

processed and quantized fd,t are stored, rather than

raw fd,t values. Impact-ordering also allows the

effectiveness-efficiency tradeoff to be controlled on

a per-query basis, and allows query evaluation to be

terminated even before the end of any of the inverted

lists has been reached [4]. Another recent proposal uses

the similarity and dissimilarity between documents to

build document clusters which can be represented in

an index structure [1]. The parallel scoring of clusters

and documents within those leads to speedups, but also

requires new scoring functions.

3 Term-frequency surrogates
Skips that bypass groups of consecutive postings are

useful in ranked querying optimizations that restrict

the number of accumulators, or in conjunctive Boolean

queries. The key operation in this case is to “forward

search” for a specified document number, bypassing all

pointers in which the document identifier is less. In this

case, there is a balance to be struck between short and

long skip groups – too short, and access gets slowed by

the large number of skip pointers that themselves must

be handled, as well as the index becoming enlarged;

and too long, and it is likely that the pointer being

sought appears in the very next block anyway. That

is, any additional control information not only adds to

the space requirement of the index, but also potentially

introduces additional costs during query processing,

if stored interleaved. Each augmentation value in a

pointer-interleaved inverted list has to be read and at

least inspected, even if it is not used to evaluate the

query.

3.1 Skipping positions
In evaluating pure ranked queries, position information

is not used, and it is natural to consider adding a skip to

every pointer so that the positional components can be

bypassed. But positional components are typically very

fine-grained units, and adding another value to every

posting is potentially expensive. Given that the typical

posting in a text index contains around 5–10 values (a

d-gap, an fd,t value, and then 3–8 positions on average),

the overhead might be 10–20% in terms of space.

Hence, instead of adding a skip element to the post-

ing and (hopefully) trading execution time for storage

space, we fold the desired control information (the skip

amount) into the information that must be read and de-

coded anyway (in particular, the fd,t value). With this

small adjustment, skipping of positional lists suddenly

becomes feasible. At risk, of course, is the fidelity of

the similarity scoring process for ranked queries, since

this is why fd,t values are included in the index.

The key observation that allows the substitution to

take place is that these two values are reasonable well

correlated – because of the monotonic relationship

between integer values and the byte length of their

byte-coded representations, lists that contain many

p-gaps are almost always longer than lists that contain

a smaller number of p-gaps. That is, we hypothesize

that ranked querying retrieval effectiveness should

not change dramatically if bd,t, the byte length of the

positions list in document d for term t, is used in place

of fd,t, the actual frequency of t in d. In particular,

we note again that the similarity function is itself a

heuristic, and should be resistant to small changes in

document statistics.

3.2 Correlation
The skip pointer for a position list is just the number

of bytes bd,t it takes to code the fd,t-long position list

of document d and term t, decremented by one if it is

given that at least one position must appear in every

posting. The compressed position list length in bytes

using a byte code is at least as large as the term fre-

quency, because at least one byte is necessary for every

coded value. Perfect correlation would be achieved if

each position gap could be coded in exactly one byte,

which might in fact hold in domains with very short

documents (containing ≤ 128 indexed words). Fig-

ure 1 illustrates the relationship between fd,t and bd,t,

and shows the least and greatest fd,t value associated

with each bd,t value over the approximately six billion

postings present in a full inverted index for the 426 GB

TREC gov2 collection. The strength of the relationship

is clear.

3.3 Space overhead
The number of bytes needed to store an integer using

the simple byte code is a monotonic function of its

value, and because bd,t ≥ fd,t, storing the surrogate

instead of term frequency gives rise to a slight increase

6

Surrogate (bytes)

T
er

m
−

fr
eq

ue
nc

y

1 101 102 103 104 105

1

101

102

103

104

105

Figure 1: Term-frequency fd,t as a function of compressed

byte length bd,t, when positional p-gap lists are stored using

the simple byte coder. The upper and lower lines record the

extremes measured on the TREC gov2 collection. Except for

relatively short lists, the two are very closely correlated.

System
Space

GB %

Base 44.418 100.0

Full skips 50.174 113.0

Part skips, fd,t > 10 44.673 100.6

Surrogate skips 44.421 100.0

Table 1: Space requirements of different word-level index

arrangements for the gov2 collection. Row “Part skips,

fd,t > 10” provides for retention of the fd,t value included

in rows “Base” and “Full skips”, but adds skip information

only when there are more than ten p-gaps in the position list.

Row “Surrogate skips” replaces the fd,t values by bd,t values.

in index size. Table 1 shows space overheads for

different alternative indexes relative to storing term

frequency alone for the gov2 collection described in

more detail in Section 4.2, including for a compromise

arrangement that adds positional skip information only

when there are more than ten p-gaps to be bypassed.

Use of full positional skips adds 13% to the index,

whereas storage of bd,t in place of fd,t translates into

an increase in index size of an inconsequential 3 MB

over a 44 GB index.

3.4 Reconstructing frequencies
Most similarity functions are based on fd,t in some way.

To facilitate the incorporation of our surrogate with dif-

ferent similarity functions in a transparent manner, it is

important to find ways to reconstitute original term fre-

quencies. This way, the surrogate can be plugged into

any search engine and is independent of the similarity

metric being used.

One simple arrangement is for a lookup table to be

employed, in which for each posting, a combination of

context variable settings (such as Ft, the overall collec-

tion frequency of the term; ft, the document frequency

Surrogate (bytes)

f d
,t

b d
,t

1 101 102 103 104 105

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2: Average observed ratio fd,t/bd,t as a function of the

compressed byte length bd,t, for the TREC gov2 collection.

of the term; and bd,t) is mapped to the average term fre-

quency observed for that combination of conditioning

values. This table can then be used to convert a given

bd,t value, in a given context, back to an estimated fd,t

that can be used in the similarity computation.

The two most interesting variables in search engines

are the document-frequency ft, indicating the number

of documents in which a term occurs, and the correlated

term frequency surrogate itself.

It turns out (based on experiments not reported

here) that the term-document frequency ft has a very

low correlation with the ratio fd,t/bd,t, and the best

single predictor of fd,t is bd,t alone, with no other

context information. Calculating the average value

of fd,t/bd,t for each distinct bd,t value yields the

relationship plotted in Figure 2. As expected, bd,t = 1
uniquely indicates fd,t = 1, and for large byte-lengths

(bd,t > 3,000), strongly indicates fd,t = bd,t. Between

these two extremes, a small table serves to capture the

observed average relationship.

An even more compact representation is to derive

a formula to reconstitute term frequencies. As can be

seen from the mid-section of Figure 2, a logarithmic

function is a good fit for the indicated interval, and

can be pre-calculated at indexing time. Then, during

query evaluation, either the direct mapping or the for-

mula is employed, depending on the value of bd,t. The

dashed line fitted to Figure 2 shows the relationship

fd,t ≈ bd,t(0.5 + (1/7) log10 bd,t).
Finally, note that – with a relatively small amount of

computation – exact fd,t frequencies are still available

if they are required. All that is necessary is that the

next bd,t bytes be processed to count (in the case of the

simple byte code and the (S, C)-byte code) the number

of stopper bytes. This option could be employed con-

ditionally when exact reproduction of a similarity for-

mula is required. For example, the correct ordering of

the top k ranked documents generated by the surrogate

approach might then be fully scored, to place them into

final presentation order.

7

4 Experimental results
We adapted version 0.9.3 of the freely available

research search engine zettair.1 To measure

the impact of using fd,t surrogates, we performed

experiments in terms of both efficiency and

effectiveness.

4.1 Experimental arrangement
The TREC gov2 collection is currently the biggest

available research dataset, and was the main resource

used in the efficiency experiments. It consists of more

than 25 million documents and 426 GB of data, and

represents a large portion of the available (crawlable)

.gov part of the web, as of early 2004. A word-level

byte coded index for gov2 occupies 44 GB, and

contains more than 6 billion postings.

We used the first 1,000 queries of the query log pro-

vided for the efficiency task of the TREC 2006 Terabyte

Track. The queries are a mixture of different length

ranked queries and do not contain phrases. This is not

an issue, because the use of a surrogate does not af-

fect query execution times for phrase queries. We per-

formed neither stemming nor stopping of the index or

queries. Timings are for production of a ranking of

the top 20 result documents, without lookup of docu-

ments or generation of snippets, using a Linux server

running Ubuntu 7.10 and kernel version 2.6.22, with

dual quad-core Xeon E5345, 2.33 GHz, 64-bit proces-

sors and 4 GB of main-memory. The machine was oth-

erwise under light load during experiments and memory

was flushed between the runs for different systems and

data sizes.

4.2 Efficiency
To measure the extent to which skipping position

lists speeds up ranked query processing, we measured

timings for the two limiting cases: when all of

the inverted lists for each query have to be fetched

from disk; and when all of the necessary data is

readily available in main memory as a result of a

recent execution of the same query. The first case

is representative for search in large collections that

do not fit into memory, while the latter measures the

improvement for in-memory search. A real-world

search engine under steady load will have performance

somewhere between these extremes, because the index

data for at least some of the terms in some of the

queries is likely to be available in main memory via

standard caching mechanisms.

To achieve these measurements, we executed the

query stream with each query immediately re-evaluated

after its first evaluation, and kept separate records of

the two execution times. This way, the second query is

likely to be executed without accesses to disk, because

the index data required will probably be served from

the disk-cache managed by the operating system. We

1http://www.seg.rmit.edu.au/zettair/

Index size (billion postings)

T
im

e
(s

ec
on

ds
)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

Baseline
Surrogate
Document−level index

Figure 3: Average per query execution time of the first

1,000 efficiency queries of the TREC 2006 Terabyte Track.

The upper and lower ranges for each system and index size

show the cost of executing that query with and without disk

accesses.

measured timings for the same set of queries over a

range of collection sizes, with random sampling from

the whole of gov2 used to form the sub-collections.

Figure 3 gives the results of these experiments,

where the vertical axis denotes average query time (in

seconds), and the horizontal axis shows the size of the

index, measured in pointers. Three different systems

were tested: the original zettair word-position

index, with pointer-interleaved positional lists; a

modified zettair in which fd,t is replaced in each

pointer by bd,t, and all (pointer interleaved) positional

lists are bypassed during ranked query execution;

and a document-level index in which no positional

information is stored at all.

The word-level index using the surrogate is demon-

strably faster than the original, and when disk access

costs are also factored out, is close to the execution

times of the much smaller document-level index. That

is, the in-memory case appears to be CPU-bound and

exhibits a linear growth in cost with increasing index

size; on the other hand, the two upper limits show a

distinctive curve as the index size grows beyond 40 GB,

and it becomes harder for the operating system to ex-

ploit inter-query caching effects.

Other experiments not included here have shown

that stopping the queries leads to much smaller exe-

cution times, but that the surrogate system keeps its

advantage over the baseline; and that executing queries

a third (or even fourth) time always leads to timings

consistent with the second execution.

4.3 Effectiveness
To see how the use of surrogate fd,t values affected

the quality of ranked retrieval, we compared four ver-

sions of zettair over three different sets of TREC

topics and data: Topics 701–750 on the gov2 collec-

tion; Topics 401–450 on the wt2g collection; and Top-

ics 451–500 on wt10g. The title of the topic was always

8

System
TREC gov2 TREC wt2g TREC wt10g

MAP σ MAP σ MAP σ

Baseline 0.237† 0.184 0.294 0.219 0.203 0.220

Surrogate 0.250∗ 0.182 0.294 0.214 0.199 0.215

Surrogate bd,t 0.243∗† 0.184 0.299 0.212 0.197 0.213

Surrogate Formula 0.243∗† 0.184 0.298 0.214 0.198 0.214

Table 2: Effectiveness comparison using TREC topics 701–850 on the gov2 collection; topics 401–450 on the wt2g collection;

and topics 451–500 on the wt10g collection. The MAP values were tested for significance at the 0.05 level, with ∗ denoting

significant relative to the Baseline, and † denoting significant relative to Surrogate.

taken as the query. We compared the performance of

the unmodified baseline zettair system with our plain

surrogate that uses bd,t instead of fd,t; with a version

that computed an approximate f ′
d,t using a lookup array

indexed by bd,t, as depicted by the plotted line in Fig-

ure 2; and with a version that computed an approximate

f ′′
d,t using a formula (but still implemented as a lookup

table indexed by bd,t), as depicted by the dashed fitted

line in Figure 2.

Retrieval effectiveness was quantified using

Mean Average Precision (MAP) and the standard

TREC methodology, which measures MAP on the

first 1,000 returned documents, and assumes that

unjudged documents are irrelevant. We then performed

pairwise t-tests at the 0.05 level to gauge significance.

Within zettair we used the default Dirichlet-

smoothed language modeling similarity function (with

μ = 1,500) that has been found to perform best across

these datasets [11].

As can be seen from the results shown in Table 2,

the influence of the surrogate is mixed, but always

small. On the gov2 collection, use of surrogates gave

rise to a significant gain in measured effectiveness,

and the two reconstitution approaches then shifted

effectiveness back towards that of the baseline

zettair. On the other hand, on both wt2g and wt10g,

no significant differences in MAP were recorded,

perhaps partly because of the smaller number of

topics in these two collections, but primarily because

surrogates just didn’t seem to make much of a

difference.

Figure 4 shows, for the gov2 collection and Topics

701–850, the effect of replacing fd,t by bd,t on a topic

by topic basis, and confirms that the use of surrogates

perturbs almost all MAP scores up or down by a small

amount, rather than create any large shifts, or move

them all consistently in the same direction.

Rather than converting pairs of rankings to

effectiveness scores and then comparing the scores,

it is also possible to directly compare the relative

fidelity of the two rankings, in terms of whether

they retrieve the same documents in the same order,

regardless of relevance. The Rank-Biased Overlap
(RBO) computation of Webber et al. [19] provides

a way of calculating the difference between two

MAP, using fd,t

M
A

P
, u

si
ng

 b
d,

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4: Surrogate versus Baseline, with MAP scores for

Topics 701–850 using the bd,t-based computation plotted as

a function of the MAP scores attained using the original fd,t-

based computation.

System
RBO

p = 0.9 p = 0.99

Baseline 1.000 1.000

Surrogate 0.768 0.796

Surrogate bd,t 0.782 0.839

Surrogate Formula 0.779 0.838

Table 3: Rank-biased overlap (RBO) for two different values

of p using TREC Topics 701–850 on the gov2 collection.

indefinite rankings, with a bias towards early positions

in the ranking, and the ability to deal with rankings

over disjoint sets of objects. A parameter 0 ≤ p < 1
controls the extent of the top-weightedness of the

comparison, with p interpreted as being the persistence
of a user who is side-by-side comparing overlap

between the two rankings, and steps from rank r to

rank r + 1 with probability p. A useful property of the

RBO formulation is that the influence of the (unranked)

tail sections of the lists is bounded, and the RBO score

for any pair of rankings is a range that can be calculated

without looking at all documents.

Table 3 lists RBO scores for the gov2 collection at

two different values of p. Broadly speaking, p = 0.9

9

places the bulk of the emphasis on the top ten docu-

ments in the ranking, and an RBO of 0.8 suggests that

around eight of the top-10 determined by the Baseline

computation appear in the same top-10 positions as in

the Surrogate one. Similarly, p = 0.99 spreads the

emphasis to depth 100 and beyond, and a score of 0.8
suggests that around 80% of the elements are in, or not

too far from, their original rank positions. Use of RBO

in this experiment neatly indicates the quality of the

reconstitution methods – both give RBO scores higher

than the plain Surrogate one.

5 Conclusion
Interleaving position information in inverted indexes al-

lows processing of queries with only one disk seek per

term in term-at-a-time systems, and reduces the number

of parallel pointers required in document- and score-at-

a-time systems. We proposed a term frequency surro-

gate as a way of speeding up query processing in such

indexes, without adding to the space required by the

index. We have shown that the length of the compressed

p-gaps is highly correlated with term frequency, and

allows the use of bd,t instead of fd,t in similarity com-

putations. We also used approximation functions of dif-

fering quality and efficiency to reconstitute the original

term frequencies. The surrogate method is demonstra-

bly faster than the baseline approach, and approaches

the speed on a document-level index for ranked queries.

Effectiveness is largely unchanged by the substitution.

Acknowledgements Justin Zobel took part in a number of

fruitful discussions, and William Webber provided the RBO

implementation. National ICT Australia (NICTA) is funded

by the Australian Government’s Backing Australia’s Ability

initiative, in part through the Australian Research Council.

References
[1] I. S. Altingovde, E. Demir, F. Can and Ö. Ulusoy. Incremen-

tal cluster-based retrieval using compressed cluster-skipping

inverted files. ACM Trans. Information Systems, Volume 26,

Number 3, pages 1–36, 2008.

[2] V. N. Anh, O. de Kretser and A. Moffat. Vector-space ranking

with effective early termination. In Proc. 24th Ann. Int.
ACM SIGIR Conf. Research and Development in Information
Retrieval, pages 35–42, New Orleans, Louisiana, United States,

2001. ACM.

[3] V. N. Anh and A. Moffat. Improved word-aligned binary

compression for text indexing. IEEE Trans. Knowledge and
Data Engineering, Volume 18, Number 6, pages 857–861, June

2006.

[4] V. N. Anh and A. Moffat. Pruned query evaluation using pre-

computed impacts. In Proc. 29th Ann. Int. ACM SIGIR Conf.
Research and Development in Information Retrieval, pages

372–379, Seattle, Washington, USA, 2006. ACM.

[5] V. N. Anh and A. Moffat. Structured index organizations for

high-throughput text querying. In Proc. String Processing and
Information Retrieval Symposium, pages 304–315, Glasgow,

Scotland, October 2006. LNCS 4209, Springer.

[6] N. R. Brisaboa, A. Fariña, G. Navarro and M. F. Esteller.

(S, C)-dense coding: An optimized compression code for

natural language text databases. In Proc. String Processing and
Information Retrieval Symposium, pages 122–136, Manaus,

Brazil, October 2003. LNCS Volume 2857.

[7] N. R. Brisaboa, A. Fariña, G. Navarro and J. R. Paramá. Simple,

fast, and efficient natural language adaptive compression. In

Proc. String Processing and Information Retrieval Symposium,

pages 230–241, Padova, Italy, October 2004. LNCS Volume

3246.

[8] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer and J. Y.

Zien. Efficient query evaluation using a two-level retrieval

process. In Proc. 2003 ACM CIKM Int. Conf. Information
and Knowledge Management, pages 426–434, New Orleans,

Louisiana, November 2005. ACM Press, New York.

[9] M. Chang and C. K. Poon. Efficient phrase querying with

common phrase index. Information Processing & Management,
Volume 44, Number 2, pages 756–769, 2008.

[10] J. S. Culpepper and A. Moffat. Enhanced byte codes with

restricted prefix properties. In Proc. String Processing and
Information Retrieval Symposium, pages 1–12, Buenos Aires,

November 2005. LNCS Volume 3772.

[11] S. Garcia, N. Lester, F. Scholer and M. Shokouhi. RMIT

University at TREC 2006: Terabyte track. In Proc. 15th
Text REtrieval Conference (TREC), Gaithersburg, MD, 2007.

National Institute of Standards and Technology.

[12] D. Hawking. Efficiency/effectiveness trade-offs in query

processing (from theory into practice workshop, 1998 SIGIR

conf.). SIGIR Forum, Volume 32, Number 2, pages 16–22,

1998.

[13] M. Kaszkiel, J. Zobel and R. Sacks-Davis. Efficient passage

ranking for document databases. ACM Trans. Information
Systems, Volume 17, Number 4, pages 406–439, 1999.

[14] A. Moffat and J. Zobel. Self-indexing inverted files for fast

text retrieval. ACM Trans. Information Systems, Volume 14,

Number 4, pages 349–379, 1996.

[15] F. Scholer, H. E. Williams, J. Yiannis and J. Zobel. Compres-

sion of inverted indexes for fast query evaluation. In Proc.
25th Ann. Int. ACM SIGIR Conf. Research and Development in
Information Retrieval, pages 222–229, Tampere, Finland, 2002.

ACM.

[16] T. Strohman and W. B. Croft. Efficient document retrieval

in main memory. In C. L. A. Clarke, N. Fuhr, N. Kando,

W. Kraaij and A. P. de Vries (editors), Proc. 30th Ann. Int.
ACM SIGIR Conf. Research and Development in Information
Retrieval, pages 175–182, Amsterdam, The Netherlands, July

2007. ACM Press, New York.

[17] T. Strohman, H. Turtle and W. B. Croft. Optimization strategies

for complex queries. In Proc. 28th Ann. Int. ACM SIGIR Conf.
Research and Development in Information Retrieval, pages

219–225, Salvador, Brazil, 2005. ACM.

[18] A. Turpin, Y. Tsegay, D. Hawking and H. E. Williams.

Fast generation of result snippets in web search. In Proc.
30th Ann. Int. ACM SIGIR Conf. Research and Development
in Information Retrieval, pages 127–134, Amsterdam, The

Netherlands, 2007. ACM.

[19] W. Webber, A. Moffat and J. Zobel. A similarity measure for

indefinite rankings. Manuscript, November 2008.

[20] H. E. Williams and J. Zobel. Compressing integers for fast file

access. Computer Journal, Volume 42, pages 193–201, 1999.

[21] H. E. Williams, J. Zobel and D. Bahle. Fast phrase querying

with combined indexes. ACM Trans. Information Systems,

Volume 22, Number 4, pages 573–594, 2004.

[22] I. H. Witten, A. Moffat and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan

Kaufmann, second edition, May 1999.

10

MetaView: Dynamic metadata based views of user files

James Bunton

School of IT
The University of Sydney

NSW 2120 Australia

jamesbunton@fastmail.fm

Judy Kay

School of IT
The University of Sydney

NSW 2120 Australia

judy@it.usyd.edu.au

Bob Kummerfeld

School of IT
The University of Sydney

NSW 2120 Australia

bob@it.usyd.edu.au

Abstract Hierarchical file systems are the most com-

mon way of organising large collections of documents.

However, there are several desirable features they do

lack. These include: good support for placing files in

multiple locations; dynamic views on the users’ data;

and explicit ordering of files. This paper introduces

MetaView, a new approach to enhancing file systems

so that they can present users with a fluid and dynamic

view of their files based on metadata. MetaView allows

users to describe how they wish to view their files by

specifying an organisational structure based on a meta-

data path. Experiments indicate that this approach is

viable for collections of up to several thousand files in

size, enabling flexible organisation of substantial parts

of a user’s file system.

Keywords Document Management, Metadata, Non-

hierarchical file system.

1 Introduction

File system organisation is a very important area of

computing. Millions of people use computers daily to

store critical, often irreplaceable data. This includes

text, spreadsheets, photos, videos, music and many

other types of documents. Most of this data is stored as

ordinary files in a traditional file system.

The file systems provided by the commonly used

desktop operating systems 1 are implementations of the

hierarchical model. From a conceptual perspective, this

is essentially the same model used in the 1969 version

of Unix [17]. In a hierarchical file system, users can

create folders and subfolders to categorise their files,

with an arbitrary level of nesting. This structure can

be browsed to locate existing files and create new ones.

Once a file is located, applications can read from and

write to it.

There are some well known limitations with this

system which MetaView aims to address. One of these

is that operating systems have a deep model that means

each file may only be saved in one location, even if it

logically belongs under two folders for the purposes of

1Linux, Mac OS and Windows.

Proceedings of the 13th Australasian Document Comput-

ing Symposium, Hobart, Australia, 8 December 2008.

Copyright for this article remains with the authors.

categorisation that suit particular user tasks. Addition-

ally the burden of organising files is placed on the user;

switching to a different categorising scheme can require

much tedious, manual effort to move files around.

Consider the example where a user has a collection

of music which comes with extensive metadata. The

user may wish to organise this music by genre, artist

and then title. Many songs fall under multiple genres.

However, there is no well supported, easy mechanism

enabling the user to express this in existing hierarchical

file systems. The operating system provides poor sup-

port for the case where a user organises files initially

in one structure, say artist, but then later decides they

would like to switch to viewing their music files by

genre and then title. The larger the collection of files,

the more onerous this task becomes.

While most operating systems support links as

a method of extending the hierarchical model, these

have several problems. Firstly, there are so many

different kinds: Windows shortcuts, Unix symlinks and

hardlinks as well as Mac OS aliases. Each of these has

different semantics with positive and negative tradeoffs

and none of them meets both the goals described above

of allowing files to be organised automatically for users

and seamlessly saving files allowing a file to exist in

multiple locations.

MetaView’s approach is to provide users with a

mechanism to specify the structure of a “view” in

which they want their files to appear. A user may

tell the system to make use of metadata to display

all of their music in a format such as: pop/The
Beatles/Yellow Submarine.mp3 where the genre

is first, then the artist, followed by the title. The user

could later choose any other organisation structure

that suits their needs simply by creating or updating

a “view”. The same user may occasionally wish to

browse by artist, then genre, so their music would

appear in this format: The Beatles/pop/Yellow
Submarine.mp3. This applies equally for any types

of files, including collections of completely different

file types, for which automatically collected or

user-specified metadata is available.

Importantly, MetaView allows any existing applica-

tion to use the standard open/close/read/write file API

to access document, making use of metadata as in the

examples above. This means the applications can op-

11

erate consistently with the user’s mental model at the

same time as allowing developers to use the existing

well-known and understood tools for interacting with

the file system.

The ultimate vision is that rather than specifying a

location on disk when saving a file, users would have

the option to tag the file with metadata, or simply save

it. The system will collect the optional user-specified

metadata, as well as automatically extracted metadata

and use this to display the file in any appropriate views

which the user defines. This relieves users of the burden

of organising their files manually, but still allows for the

familiar and powerful browsing interface. MetaView

currently implements the “view” part of this interface;

changes would be required to the operating system’s

save-dialogue API in order to support this alternate sav-

ing behaviour in graphical applications.

2 Related Work

There have been several studies of how users work with

their personal data, such as [4, 18, 5, 16, 12]. These

point to some of the limitations in current systems caus-

ing difficulties for users in organising documents within

multiple locations in file hierarchies as well as the lack

of support for the user to define an arbitrary, custom or-

dering of files within a directory. Reflecting the recog-

nition of the limitation of the prevailing hierarchical file

systems, both the research community and commercial

organisations have explored alternative approaches de-

signed to improve the situation. We now consider some

key examples.

One class of systems has taken the approach of en-

hancing search functionality. These include SFS [11],

BeFS [10], Connections [19], LISFS [15] and Spot-

light [3]. All of these systems provide alternate ways

of accessing the information stored in a hierarchical file

system. However, even this facility does not address the

basic goals of our work, to overcome the limitations of

hierarchies. These search tools operate in the context

of the existing hierarchical file systems and still leave

the user with the burden of manually reorganising files

if the user wants to organise documents into a different

hierarchical view.

By contrast, some research systems have attempted

a complete breakaway from the hierarchical model. Ex-

amples include LifeStreams [8], Presto [7], Placeless

Documents [6], PosCFS [13] and LIFS [2].

Selected systems particularly relevant to MetaView

will now be described in greater detail.

2.1 SFS

The Semantic File System [11] was the first implemen-

tation of a file system that was semantic in that it pro-

vided virtual directories for queries based on metadata

extracted from files. For example, it made use of au-

thor, title or words contained in the file. The way that

it worked was that a virtual directory was created on

request, the name of the directory being the query. This

virtual directory concept allowed for compatibility with

all existing software.

A process called a transducer ran automatically in

the background to keep the store of metadata up to date

with the contents of the files. The virtual directories

were provided using a custom NFS server.

The evaluation of this system was primarily focused

on system performance. The amount of disk space re-

quired for the metadata store and its index was deter-

mined. The total time to index files as well as incre-

mental updates to the index were also measured. The

authors concluded that the performance and space re-

quirements of realtime indexing were not overly taxing

for the file server. The system was found to be useful

for sharing files with other research groups, although

there was little detail of this. It was also noted that in

the case of file types for which no transducer had been

written, these files were difficult to locate.

2.2 LISFS

The Logical Information Systems File System

(LISFS) [15] is also an implementation of a semantic

file system. Like SFS 2.1, queries are supported as

virtual directories.

The system is implemented as a Linux VFS plugin.

Transducers operate in the background to collect meta-

data and update indices.

To make a query, a directory path is constructed

out of expressions about the collected metadata and

can include logical constructs such as ’and’, ’or’, ’not’.

Queries can be constructed incrementally. At each

stage in the query the user may choose to look at the

result set so far, or at a list of possible extensions to the

query. This allows for a kind of browsing with flexible

organisation of files, as the user proceeds.

Also supported is the ability to make a query within

a file, for example queries within a BibTex database

will return a portion of that file. The result set can be

edited and changes propagate back to the original in the

way that one would expect. This aspect of the system

enables the user to think about abstract documents even

when these are actually stored within a single file.

No formal evaluation of the system was mentioned

in the paper, although several examples were given of

the system in use. It operates on several file types,

including mp3 collections, source code, BibTex files

and email. LISFS is important in that it extends the file

system metaphor to allow more powerful and flexible

access to data in a manner compatible with existing

software.

2.3 LiFS

The Linking File System (LiFS) [2] extends the hierar-

chical file model to include the concept of links between

files. The authors point out that many applications have

developed their own systems of storing and searching

file metadata, including links. The main shortcoming

of this approach is that any one computer system will

12

have several incompatible stores of metadata using a

different interface.

The solution given by the authors is a file system

that includes support for traditional file metadata as

well as links between files. These links are intended

to allow desktop search tools to detect importance,

relevance and relations between documents in a similar

manner to the way web search engines use hyperlinks

in web pages.

New system calls were added to support creating,

reading and modifying links between files. Unfortu-

nately, this means that LiFS compromises compatibility

with existing applications.

The file system is designed to operate on high speed,

high capacity non-volatile memory. Several tasks were

performed with LiFS on standard volatile RAM,

compared with ext2 and XFS. LiFS outperformed these

systems in metadata access, and was close in other

areas such as creating/deleting files and read/write

operations.

2.4 Connections

Connections [19] is a desktop search tool. It works

similarly to content search tools like Spotlight [3], but

augments the results with contextual information gath-

ered from monitoring user activity.

The system traces all file activity by the user,

building up a relation graph between files. Links

are defined between files which were accessed at

similar times where these links represent a weighted

relationship. This graph is analysed, to discard

irrelevant, and append relevant entries to the standard

content search as well as to help rank these results.

The user evaluation performed by the authors

showed that Connections improved both average

recall and precision over a standard content search.

Additionally the performance impact of collecting the

trace data and analysing it to build the context graph

was found to be minimal.

2.5 Presto

The Presto [7] system’s primary method of locating

documents is through “collections”, where these are

live queries over document metadata combined with an

explicit document inclusion and exclusion list which

the user may manipulate. Collections may also be

nested.

One particularly novel feature is personal metadata.

When attaching metadata to a shared file, a user may de-

cide to keep that metadata private. This could be useful

for marking files as “interesting”, metadata that is not

necessarily relevant to other users of that document.

Presto sourced documents from many locations

including the local file system, network shares, web

sites, email clients, etc. These data sources were

implemented as plugins, each of which was responsible

for allowing read and write support to its respective

source data, as well as extracting metadata.

Two APIs were provided by Presto. A custom NFS

server acted as a compatibility layer intended for exist-

ing applications. The primary API allowed full access

to all of the functionality offered by the system.

A custom document browser was built in the pri-

mary API to allow users to create and manipulate col-

lections and the files within them. When a user wishes

to work with a document in a Presto-unaware applica-

tion, that application is launched and given the path to

a file on the NFS server.

There was no formal evaluation. However, the

authors reported that their goal, creating a system

where attribute-oriented access was the primary

method of document interaction, was successful.

3 Approach and Overview

Many of these novel approaches to explore alternatives

to the prevailing hierarchical file system structure use

virtual directories, whose path name constitutes a form

of search query string, as a user interface for finding

files. By contrast, our approach in MetaView is to cre-

ate views, which are populated with directories and files

such that the path to a file describes its contents accord-

ing to the metadata which the user is interested in. If

we think of the full path name of a file in a conventional

hierarchical file system as an ordered series of metadata

tags, essentially MetaView makes it possible to gener-

alise that to allow other orderings of the metadata to

create different views.

To implement this, we considered several possibil-

ities and implemented one based upon symbolic links

on a regular file system. This means that MetaView re-

tains full compatibility with all existing software and re-

quires no kernel modules or modifications. This makes

installation simple and means that users do not need to

trust their collection of files to an unknown file system.

Like Presto, MetaView attempts to provide an al-

ternative to the hierarchical file system for organising

and retrieving files. Presto’s “collections” are similar in

purpose to a “view”; however, there are some important

differences. Where a collection is a flat list of files

which may contain other collections, a view consists

of a possibly nested set of files and folders kept in a

structure managed by MetaView.

The following figures are screenshots from the Mac

OS X Finder. Each shows a different view of the same

collection of files, as described below. The goal of

MetaView is that users should be able to specify arbi-

trary views over their files as they wish, reflecting their

immediate needs for different structuring of their files.

For example, a user may decide to have several views

of their music files. Let us suppose that the first is a

flat list of files as shown in the small subset of a user’s

music files in Figure 1. This shows just the first few of a

large number of music files. Each of these has metadata

containing various attributes describing the file.

We now illustrate MetaView’s power to enable the

user to automatically reorganise this set of files for more

13

Figure 1: Artist-Title.mp3

convenient browsing. For example, suppose that over

time, the user has amassed large numbers of these mu-

sic files and at some stage, they decide to browse their

music, thinking of it in terms of the genre first and

within this, the artist. MetaView enables them to issue

a command to define this new view as illustrated in Fig-

ure 2. Note that in this case, many files fit into multiple

genres and the view takes care of this in the way that

the user would reasonably expect, placing the music file

into each genre folder it belongs in. This can be seen

in Figure 3, the file ‘Flat Ed - Growing Crows.mp3’

appears under both the ‘country’ and ‘indie’ genres.

Figure 2: Genre/Artist-Title.mp3 #1

Now we may suppose that at a later time, the user

decides they want to be able to browse their music in

terms of a different organisation, this time making the

artist the first aspect and within that the title. This is

illustrated in the example shown in Figure 4. Once

again, some music files have multiple artists and the

view will handle this correctly.

Figure 3: Genre/Artist-Title.mp3 #2

Figure 4: Artist/Title.mp3

The final example we will consider is of a combina-

tion of the previous two, browsing by genre, then artist

with the filenames being the title of the song (Figure 5).

This demonstrates the power of MetaView; users can

easily construct these alternate views of their files ac-

cording to their needs and wishes, enabling them to

adapt their file structure to changes over time.

Figure 5: Genre/Artist/Title.mp3

14

4 Architecture

File metadata can be thought of as an extension to the

hierarchical model. For our purposes, file metadata is

both structured data extracted from a file as well as an-

notations or tags that a user may provide. For example,

an email message may have the Subject, From, To, etc

headers extracted as metadata and users may tag photos

with the names of people in them.

MetaView has been implemented to run under Mac

OS X 10.5, making heavy use of the metadata capabili-

ties of the Spotlight API.

Apple’s Spotlight was chosen for this project due

to its wide support for existing file types and relative

maturity compared to other systems. Spotlight has

“importers” for many file types, these are called to

examine a file by Spotlight and extract any metadata

from it. This metadata is then stored and indexed

in the Spotlight database. Apple provides good

documentation on writing programs that make use

of this database as well as writing new importers

to support additional file types. MetaView can be

used with any file type supported by Spotlight, these

include: email, audio (MP3, AAC), office documents

(Microsoft Office & OpenDocument), images (JPEG,

PNG) and many others. There is also a commonly used

technique that allows Spotlight to index individual

documents even when they are all stored in a single file.

In addition to the automatically extracted metadata,

users may also annotate files with their own custom

metadata such as tags for project names, or to mark a

file as ‘todo’.

Mac OS X

Spotl ight

File System

Query and
result set

Materialise
view

MetaView

Filter

View

User

Creates
a view

Interacts
with v iew

Figure 6: MetaView architecture

The system is implemented in two parts; the search

filter and the metadata view (Figure 6). MetaView is

written in Python and uses Apple’s Spotlight API for

searching and access to file metadata.

As input to MetaView, users provide an optional

search query and a view specification which they wish

the search results to be displayed in. The search query

may be as simple as restricting the view to files in a

particular directory, or it may be omitted entirely.

An example query for all MP3 files on the system

would look like:

kMDItemContentType == ’public.mp3’

This query is expressed in the standard Spotlight query

language. It could easily be constructed by users in-

teracting with an application, such as the Mac OS X

Finder.

The metadata view is the most important part of

MetaView. In the case of this music example, metadata

is extracted by Spotlight from the ID3 tag of the MP3

files. This is a standard tag format that is included with

most MP3 music files. Users specify how they want

to view their files in the form of a structured hierarchy

with different metadata at each level. A view specifica-

tion for browsing music by genre, artist and then title is

expressed as:

$(genre)s/$(artist)s/$(title)s.mp3

View specifications are Python format strings that are

evaluated with respect to each file to be placed in the

view. This too could be made intuitive for users to

formulate, with the support of a graphical interface.

MetaView creates a Spotlight search for each view

that has a unique query. Spotlight then gives a list of

query results which MetaView uses to populate a direc-

tory with links to the original files according to the view

specification. In this way the user’s existing workspace

is not disrupted at all but they can still take advantage

of the advanced functionality the MetaView offers.

It is important to note that the user’s files remain on

their existing filesystem and can still be accessed in the

usual way if so desired. The view is implemented as

symlinks to the original files in a directory managed by

MetaView. As the user works on their system, creating,

deleting and editing files, MetaView keeps the view up

to date in real time.

Spotlight notifies MetaView whenever there is a

change to any of the files that are being watched,

whenever a new file becomes relevant and whenever

an existing file is no longer relevant. This notification

consists of a list of all the files which currently

match the search results. MetaView takes this list

and performs a stat() on each file to check its last

modification time and sorts the Spotlight list into

removed files and added files. A changed file is

removed and then re-added.

These lists are then passed to the ‘view’ compo-

nent which removes all links to the removed files and

then inserts links to the added files into the appropri-

ate places. By this process unchanged files are left in

place rather than recreated each time Spotlight sends an

updated result set.

15

The user may interact with the constructed view us-

ing any existing software. Views can be browsed from

the command line or using the Finder. As symlinks are

used, opening any link from any application causes that

application to work on the original file.

In this way users can create views of their file col-

lection and work with them using their existing soft-

ware.

The concept of a view, providing flexible

organisation of a users’ file collections, not specific to

any particular operating system. It is a generalisation

of existing hierarchical file systems and is a generic

concept that could be implemented under any operating

system. However the prototype discussed is tied

closely to Mac OS X. For a Linux version, the

Spotlight metadata backend could be replaced with

Strigi [1] or Tracker [9] while the symbolic link

implementation of views would remain unchanged. To

port MetaView to Microsoft Windows would require

larger changes; both the view and the search filter

components would need to be rewritten.

5 Scalability Evaluation

Since MetaView is designed to support new ways to

organise collections of files, it is important to assess

whether it can do this efficiently and to have an un-

derstanding of the scalability as the numbers of files

grows. We need to assess the scalability of MetaView

for its two main actions, constructing a new view and

updating a view after relevant changes in the part of the

filesystem managed by MetaView. A relevant change

is a modification to a file’s data or metadata such that

the file needs to be added to the view, removed from

it or moved within it. We now describe two forms of

scalability analysis, the first analytical, based only on

the operations required and the second empirical, based

on results with actual sets of files.

5.1 Analytical

One of the key costs of handling changes to the man-

aged file set is due to our use of Spotlight for the current

implementation. The Spotlight API does not give a list

of changes to search results. This imposes a small con-

stant time cost for each file in the result list whenever

a change is made. For each change to the view, there

may be several calls to the more expensive mkdir(),

rmdir(), symlink() or unlink() as well as the cost

of extracting metadata attributes from the Spotlight API

in order to effect the update. For each update posted by

Spotlight, there is a cost O(Sn + Um); where n is the

number of files in the result set, m is the number of

changed files, S is the cost of a stat() and U is the

cost of updating the view for a single file.

If the Spotlight API were enhanced to give incre-

mental updates to search results, rather than posting the

entire result set each time, this performance could be

improved. The complexity would drop to O(Sm +

Um), a dramatic improvement, especially for the im-

portant case where there is a large set of files and there

is a change to a small number of them.

The cost of creating the view is the expected

O(Un).
The cost of using MetaView would remain the same

for any file type supported by Spotlight. This is be-

cause every Mac OS X computer has already indexed

every Spotlight-supported file on the system, and the

cost of extracting metadata from the Spotlight database

is independent of the original type of the file.

5.2 Empirical

For this test, we chose to use a set of files that could be

readily assembled and where we could also gain meta-

data that would be useful for creating structures. We

chose to use a collection of creative commons licensed

music which could be used freely by others to repeat

the experiment. The evaluation was conducted with a

10GiB collection of music from opsound.org [14] with

1836 MP3 files. For each of these files Spotlight allows

access to metadata such as artist, title and usually multi-

ple genres. The testing was performed on an Intel iMac

running Mac OS X 10.5.5 with a Core 2 Duo 2.16 GHz

processor and 1GiB of memory.

The cost of a single stat() system call was mea-

sured to be an average of approximately 0.0015 seconds

over 1000 uncached files. This drops to about 0.00001
seconds for 1000 cached files. However in general, we

would expect that the files that MetaView will be per-

forming a stat() upon will not be cached, giving the

slower time as the expected average. This corresponds

to the S variable in the analytical analysis.

For the majority of cases in a large collection

of files, updating the view will be a matter of a

symlink(), unlink() or both for each file that needs

to be updated. Over an average of 1000 files, the cost

of a symlink() and an unlink() was measured to be

0.0003 seconds. Note that for each file that needs to be

placed in several locations, this will require multiple

system calls. So the actual time for the update will

depend upon this.

MetaView took 20 seconds on average to construct

a view in the format: Genre/Artist/Title.mp3. To

update the view after changing one file took 3 seconds

on average. Almost all of this time was spent in the

stat() call, required to determine which file in the list

from Spotlight was the changed one.

Additional tests were performed with different sized

file collections, these can be seen in Figure 7 and 8.

All tests were performed 3 times while the system was

under no load and the result was averaged. In all cases

there was less than one second difference between the

trials.

The difference in time between the two views re-

flects the number of links that must be created in each

case. In Figure 8 exactly one link is created for each

16

��

��

���

���

���

�� ���� ���� ���� �	�� ����������������������	�������

��

�
��

�
�

�������������

�������
�����

Figure 7: Results: Genre/Artist/Title.mp3

��

��

��

��

��

��

��

���� ���� ���� ����� ����� ����� ����� ����� �����

	

�
��

��
�

�

�����������
���

�����
��

Figure 8: Results: Artist - Title.mp3

file, compared with Figure 7 where each file appears in

several genres.

The empirical results match up with analytical anal-

ysis showing that MetaView scales linearly with the

number of files it manages.

6 Conclusions and Future Work

A major performance cost is processing the complete

set of results that Spotlight posts whenever a change

is detected in even a single file. MetaView could use

the FSEvents API to watch for changes to files on the

system, in this way it would know which files have been

changed in a Spotlight result set without resorting to a

stat() of each file. This approach adds the cost of

processing each file change event on the system, which

may even be more work. A better solution would be

possible if Spotlight optionally provided updates to ex-

isting result sets rather than reposting the complete list

of files each time.

Presto provides users with the ability to add and re-

move files from a collection and have these actions stay

persistent. MetaView nearly gets this ability for free by

using the regular file system. If a file is added to a view

or removed from a view by another program, MetaView

will simply ignore it. However additional support for

this would be useful. For example, the action of placing

a file into a directory which contains files tagged as

“todo” could tag that file. This means it would appear

in other views that show files tagged as “todo”.

There are several promising directions for future

work. One of these would provide support for

“bundles”. These are groups of files which should be

treated as one logical unit. Particularly on Mac OS X,

many applications create directories full of files that

appear to the user as one bundle. MetaView should

also treat this as one when populating views and not

delve inside the logical unit.

A complementary direction would support users

in creating views of abstract “documents” which are

stored within a single file. One important example

of this is the standard mbox file which contains a

collection of mail items, each of which the user may

think of as a separate document. Another class of

example is a file containing a collection of consistent

elements, such as bibtex entries. Since the user may

wish to organise these virtual documents into different

structures, it would be valuable for MetaView to be

able to operate at this level. The simplest way to do this

is to make these abstract documents appear to Spotlight

as individual files. Many Mac OS X programs already

use this technique, including Apple’s Address Book for

contacts as well as Safari for bookmarks and history.

Stand-in files are created for each abstract document

with just enough information to allow the owner

application to find the actual content.

The system could be further integrated with applica-

tions by giving users the ability to apply custom meta-

data to files when saving them. A save dialogue that

allowed users to tag files, displaying a list of commonly

used tags, might be a good way to achieve this.

MetaView represents an exploration of a new mech-

anism for supporting flexible organisation of personal

information, in terms of arbitrary sets of hierarchical

organisations of documents. With MetaView, users can

flexibly create views of their file system where these

views structure the documents in the ways that suit the

user’s current needs, even if this was not anticipated

when the files were first saved and organised. These

views are automatically updated as the contents of the

file system changes, keeping the user’s workspace up

to date and organised with minimal effort on their part.

Importantly, the user’s existing file system organisation

is left untouched by MetaView, allowing a user a safe

entry point, so they can use MetaView without altering

their existing work practices and without the risk of

being unable to use the multitude of existing operating

system services.

MetaView provides a flexible and adaptable

new means to organise and access files. While it

is consistent with the mental model of traditional

hierarchical file systems that most users are familiar

with today, it enables the user to extend that

same mental model to arbitrary new organisation

possibilities, while preserving compatibility with

existing software and work practices.

17

References

[1] Strigi - the fastest and smallest desktop searching pro-

gram. http://strigi.sourceforge.net, 2008.

[2] Sasha Ames, Nikhil Bobb, Kevin M. Greenan, Owen S.

Hofmann, Mark W. Storer, Carlos Maltzahn, Ethan L.

Miller and Scott A. Brandt. Lifs: An attribute-rich file

system for storage class memories. In Proceedings of

the 23rd IEEE / 14th NASA Goddard Conference on

Mass Storage Systems and Technologies, 2006.

[3] AppleComputer. Working with spotlight. http://

developer.apple.com/macosx/spotlight.html,

2006.

[4] Deborah Barreau and Bonnie A. Nardi. Finding and

reminding: file organization from the desktop. SIGCHI

Bull., Volume 27, Number 3, pages 39–43, 1995.

[5] Richard Boardman, Robert Spence and M. Angela

Sasse. Too many hierarchies? the daily struggle for

control of the workspace. In Proceedings of HCI

International 2003, pages 616–620, New Jersey, USA,

2003. Lawrence Erlbaum Associates.

[6] Paul Dourish, W. Keith Edwards, Anthony LaMarca,

John Lamping, Karin Petersen, Michael Salisbury, Dou-

glas B. Terry and James Thornton. Extending doc-

ument management systems with user-specific active

properties. ACM Transactions Information Systems,

Volume 18, Number 2, pages 140–170, 2000.

[7] Paul Dourish, W. Keith Edwards, Anthony LaMarca and

Michael Salisbury. Presto: an experimental architecture

for fluid interactive document spaces. ACM Transac-

tions Computer-Human Interactaction, Volume 6, Num-

ber 2, pages 133–161, 1999.

[8] Scott Fertig, Eric Freeman and David Gelernter.

Lifestreams: an alternative to the desktop metaphor.

In CHI ’96: Conference companion on Human factors

in computing systems, pages 410–411, New York, NY,

USA, 1996. ACM.

[9] Gnome Foundation. Tracker - a personal search tool and

storage system. http://live.gnome.org/Tracker/

WhatIsTracker, 2008.

[10] Dominic Giampaolo. Practical File System Design with

the Be File System. Morgan Kaufmann Publishers, Inc.,

1999.

[11] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon and

Jr. James W. O’Toole. Semantic file systems. In SOSP

’91: Proceedings of the thirteenth ACM symposium on

Operating systems principles, pages 16–25, New York,

NY, USA, 1991. ACM.

[12] William Jones, Ammy Jiranida Phuwanartnurak, Ra-

jdeep Gill and Harry Bruce. Don’t take my folders

away!: organizing personal information to get things

done. In CHI ’05: CHI ’05 extended abstracts on

Human factors in computing systems, pages 1505–1508,

New York, NY, USA, 2005. ACM.

[13] W. Lee, S. Kim, J. Shin and C. Park. Poscfs: An

advanced file management technique for the wearable

computing environment. Lecture Notes in Computer

Science, Volume 4096, pages 966, 2006.

[14] OpSound.org. http://opsound.org, 2008.

[15] Yoann Padioleau, Benjamin Sigonneau and Olivier Ri-

doux. Lisfs: a logical information system as a file

system. In ICSE ’06: Proceeding of the 28th interna-

tional conference on Software engineering, pages 803–

806, New York, NY, USA, 2006. ACM.

[16] Pamela Ravasio, Sissel Guttormsen Schär and Helmut

Krueger. In pursuit of desktop evolution: User problems

and practices with modern desktop systems. ACM

Transactions Computer-Human Interaction, Volume 11,

Number 2, pages 156–180, 2004.

[17] Dennis M. Ritchie and Ken Thompson. The unix time-

sharing system. Commun. ACM, Volume 17, Number 7,

pages 365–375, 1974.

[18] C.A.N. Soules and G.R. Ganger. Why can’t i find my

files? new methods for automating attribute assignment.

Proceedings of the 9th conference on Hot Topics in

Operating Systems, Volume 9, pages 20–20, 2003.

[19] Craig A. N. Soules and Gregory R. Ganger. Connec-

tions: using context to enhance file search. SIGOPS

Oper. Syst. Rev., Volume 39, Number 5, pages 119–132,

2005.

18

On the relevance of documents for semantic representation

Laurianne Sitbon
National ICT Australia

Queensland University of Technology
Brisbane, Australia

laurianne.sitbon@nicta.com.au

Peter Bruza
Queensland University of Technology

Brisbane, Australia

p.bruza@qut.edu.au

Abstract The subject of this paper is the quality
of semantic vector representation with random
projection under various conditions. The main effect
we are watching is the size of the context in which
words are observed. We are also interested in the
stability of such representations since they rely on
random initialisation. In particular we investigate the
possibility of stabilising terms representations through
documents representations. The quality of semantic
representation was tested by means of synonym finding
task using the TOEFL test on the TASA corpus. It was
found that small context windows produces the best
semantic vectors with 59.4 % of the questions correctly
answered. Processing the projection between terms
and documents representations several times was found
not to improve the stability of the representation. It
was also found not to improve the average quality of
representations.

Keywords Natural Language Techniques and Docu-

ments, Semantic spaces, Random projection.

1 Introduction
In computational linguistics, information retrieval

and applied cognition, words are often represented

as vectors in a high dimensional space computed

from a corpus of text. In a variety of studies from

cognitive science there have been encouraging results

using such representations to replicate human word

association norms, for example, semantic association

(see, for example, [11], [10], [14]). Therefore, there is

some evidence such vector representations do capture

semantics of words in a way which accords with those

we carry around “in our heads”. We will call such

representations “semantic vectors”. The aim of this

paper is to evaluate the effect of granularity on the

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

quality of semantic vectors. Both documents (low

granularity) and windows (high granularity) will be

used to compute semantic vectors.

Dimensionally reducing the term-documents matrix

has often been shown to improve the quality of semantic

vectors, for example, latent semantic analysis. How-

ever, singular value decomposition, the means for di-

mension reduction is computationally expensive. Ran-

dom Indexing [12] offers a computationally inexpen-

sive alternative to dimension reduction [15]. However,

the semantic vectors computed by RP are not stable due

to the final semantic vector representations depending

on initial random seeds. We aim at investigating if the

use of an iterative repetition of the projection process

between terms and documents representation will lead

to more stable representations. We will also investigate

if it is more efficient.

The structure of this paper is as follows. In the next

section the semantic vector model of random projection

will be described. Thereafter the TOEFL test will be

used as a means of evaluating semantic vector repre-

sentations in relation to the questions just raised.

2 Semantic space models
The idea behind semantic spaces is that the meaning

of a word is carried by the words that co-occurs with

it, and that two words are semantically related if they

tend to co-occur with the same words. Co-occurrence

is defined with respect to a context, for example, a win-

dow of fixed length, or even a document. Co-occurring

words can be stored into matrices where the rows can

represent the terms and the columns can represent con-

texts. Each row corresponds to a vector representation

of a word. The strength of semantic association be-

tween words can be computed by using cosine - the

smaller the angle between words representations, the

more semantically related they are assumed to be.

19

2.1 Random Projection
Random Projection (RP) is based on the fact that

a term-document matrix computed from a corpus

is sparse. The sparsity is large enough that the

vector representations can be projected onto a basis

comprising a smaller number of randomly allocated

vectors. Due to sparseness condition, the basis of

random vectors has, in general, a high probability of

being orthonomal [2]. The algorithm proceeds in 4

steps after the creation of a document- (or term-) term

matrix : (1) create an empty matrix where rows are

documents and the columns new random vectors of

dimension t, (2) randomly insert in each document

vector t/6 of positive seeds and t/6 of negative seeds,

(3) generate a matrix where the rows are terms and the

columns new dimensions by adding the corresponding

random vector to a term each time it appears in a

document, (4) generate the new matrix of documents

in new dimensions by adding the corresponding term

vector each time a document contains a term.

This can be seen mathematically as the new repre-

sentation Mrandom of an initial term-document matrix

M spanning N terms in d documents and then reduced

to t dimensions through a random matrix as in Equation

1.

Mrandom
t×N = Randomk×dMd×N (1)

d1 0 0 0 1 0 0 -1
d2 1 0 0 0 0 -1 0
d3 0 1 -1 0 0 0 0
d4 0 0 -1 0 0 0 1
d5 0 -1 0 1 0 0 0
...

T1 0 0 0 0 0 0 0
T2 1 0 0 0 0 -1 0
T3 0 0 0 0 0 0 0
T4 0 0 0 0 0 0 0
T5 0 0 0 0 0 0 0
...

d1
d2

d3
d4

d5
...

T2...

d1 0 0 0 0 0 0 0
d2 4 -1 7 -3 -8 9
d3 0 0 0 0 0 0 0
d4 0 0 0 0 0 0 0
d5 0 0 0 0 0 0 0

...

T1 -2 3 8 -6 0 5 -7
T2 4 -1 7 -3 -8 9
T3 ...
T4 ...
T5 ...
...

...

d1
d2

d3
d4

d5
...

T2...

Figure 1: Process of random projection to compute

term and documents matrices.

The process is illustrated on Figure 1 where it is sug-

gested that the last two steps could be repeated, using

the previously computed matrix for documents instead

of the initial random one.

The number of positive and negative random seeds

initially followed a Gaussian distribution but it has been

shown [1] that a probabilistic distribution with 1/6 is

equivalent. This method can be applied to retrieve doc-

uments and is referred to as Random Indexing [12]. The

initial representation can also be based on contexts [8].

3 Experiments
3.1 Experimental setup
As a means to compare the semantic vector models

above, the TOEFL synonym task on the the TASA

corpus was used. The basic hypothesis is the higher the

TOEFL score, the better the quality of the underlying

semantic vector. This choice follows many similar

evaluations in the literature and allows our results to be

placed in the perspective of other published results. The

TOEFL synonym test comprises 80 questions. Each

question is multiple choice made of a question word

and four potential answers. A question is “incomplete”

if the question term is unknown to the model in

question, for example, because the question words

were not present in the model. In the main experiment

both the number of correct answers and the number

of answerable questions will be reported. In the best

results section the scores will be calculated according

to the measure introduced in [9] where non-answerable

questions will be scored 0.25 each thereby simulating

guessing. The TASA1 contains 44,486 documents of

”General Reading up to 1st year college” . It is assumed

American students can learn relevant vocabulary and

language usage from these readings. These documents

contain 148,221 different non-stop terms for a total of

8,605,497 words. We have performed the experiments

using a java implementation of Random Projection

provided by the semantic vectors package2[15]. Both

corpus and questions were stemmed with a Porter

Stemmer implementation3 and the corpus is indexed

with Lucene4 to generate the initial matrix. Both term-

document and term-context matrices were investigated.

The minimum frequency of terms in the initial

representation is set to 2 and the values of the initial

seeds are either -1 or +1. Over the 80 questions of

the TOEFL test, two are incomplete within all models

constructed using Random Projection with stemming

and 6 are incomplete without stemming. As mentioned

previously, the semantic vectors produced by Random

projections are somewhat unstable due to the use of

1We are grateful to Tom Landauer for providing the TASA corpus
2http://code.google.com/p/semanticvectors/
3http://tartarus.org/ martin/PorterStemmer/
4http://apache.lucene.org

20

random seeds during initialization. Therefore, the

experiments are reported on the basis of 5 runs.

3.2 The effect of dimension reduction
The effect of varying dimension size is evaluated on

word-document matrices constructed from the corpus.

The notion of projection aims at some generalisation

over the initial content of documents. Stemming is a

first dimension reduction in that sense since it projects

words onto word stems. In the context of random pro-

jection the number of random vectors used as a basis

for representing the terms is another means of dimen-

sion reduction.The average results of testing RP with

various dimensions are reported on Figure 2.The aver-

age results for non-stemmed data represented on the

dashed line are well under the accuracy of stemmed

data. Interestingly the highest average value of 37.4

Figure 2: Accuracy of Random Projection for various

numbers of dimensions.

correct answers out of 78 (33.2 without stemming) is

obtained with 1800 dimensions which is the number of

dimensions recommended in [2]. The five individual re-

sults for each run on stemmed data consistently exhibit

a quite large variation suggesting the underlying vector

representations are not that stable.

3.3 Stabilising representations with cycles
The idea suggested in Figure 1 of repeating the last

two steps could lead to more stable representations.

We have experimented with this idea by using

different numbers of cycles (iterations) for the best

set of parameters according to previous experiment

: stemmed documents projected on 1800 random

dimensions. The iterative reallocation of values on

random vectors from terms matrix to document matrix

and vice-versa doesn’t improve neither the quality of

representations according to figure 3 nor the stability

between two representations.

Figure 3: Average (left) and standard deviation (right)

of the number of correct answers on 5 RP models for

various numbers of cycles.

3.4 Reducing the granularity : context
windows

As a mean of evaluating the semantic impact of full

documents on semantic representation we have also

built models based on an initial term-term matrix

computed with a sliding window. This leads to

the optimal size of the context in which words are

considered to be co-ocurring. Figure 4 shows the

average results for various context window sizes

with random vectors. The random vector have been

computed with 1800 dimensions since this size lead to

the best results in previous experiments. The window

sizes refer to the total number of words taken into

account including the target word. The results show

Figure 4: Accuracy of Random Projection using a

word-word matrix with different context window sizes.

that the smallest context window (3 words) provides

the most accurate results on the TOEFL test with 45

correct answers out of 78 in average. This implies that

the model constructed based on the co-ocurrencies of

the words only with the previous and the next word

(these not being stop-words) performs the best for the

synonym test. With a context window size of up to 9,

the results are higher (40 correct answers out of 78)

than when using whole a document as context. It is

however important to note that context based models

are more computationally expensive.

21

4 Conclusion
The best average obtained with a minimal window of

size 3 words leads to a score of 59.4% of accuracy

according to TOEFL evaluation. Comparison with pre-

vious published work should be viewed in light of doubt

regarding the size of the underlying corpus. In this pa-

per, the corpus comprises 44,486 documents whereas in

other studies reported in the literature, the size is either

37,600 or 30,473 articles. We are unable to explain this

discrepancy. Several results have been reported on the

use of LSA. [9] had 64.5% of correct answers, [6] re-

port results of 55.31% correctly answered questions for

LSA and [4] found 63.6 % of correct responses using

the cosine similarity and 61.5% using an inner product

instead. Random Indexing [7] using word contexts gave

35-44% with unnormalised 1800 dimensional vectors

and 48-51% with normalised vectors .

The models developed for information retrieval pur-

poses tend to show that representing semantic spaces at

the document level might benefit from a context win-

dow representation of words. One of the reason of the

failure of document sized contexts could be the vari-

ety of topics present in single documents resulting in

noisy representations. A intermediate solution still to

be tested is to create topically coherent sub-documents

using a linear segmentation algorithm.

In the future, it will also be worth investigating how

stable semantic vectors are with slight corpus changes,

or on larger corpora. Potential other tasks for examin-

ing semantic vectors are replications of free association

[13] and priming [5].

Acknowledgements NICTA is funded by the Australian Gov-

ernment as represented by the Department of Broadband, Communi-

cations and the Digital Economy and the Australian Research Council

through the ICT Centre of Excellence program.

References
[1] D. Achlioptas. Database-friendly random projec-

tions. In Proc. of the Symposium on Principles of
Database Systems, pages 274–281, 2001.

[2] E. Bingham and H. Mannila. Random projection

in dimensionality reduction : applications to im-

age and text data. In Proc. of the 7th KDDM,

pages 245–250, New York, NY, USA, 2001.

[3] D. M. Blei, A. Y. Ng and M. I. Jordan. Latent

dirichlet allocation. Journal of machine learning
research, Volume 3, pages 993–1022, 2003.

[4] T. L. Griffiths and M. Steyvers. Topics in semantic

representation. Psychological review, Volume

114, Number 2, pages 211–244, 2007.

[5] M. N. Jones, W. Kintsch and D. J. K. Me-

whort. High-dimensional semantic space accounts

of priming. Journal of memory and language,

Volume 55, pages 534–552, 2006.

[6] M. N. Jones and D. J. K. Mewhort. Representing

word meaning and order information in a com-

posite holographic lexicon. Psychological review,

Volume 114, Number 1, pages 1–37, 2007.

[7] P. Kanerva, J. Kristoferson and A. Holst. Random

indexing of text samples for latent semantic analy-

sis. In Erlbaum (editor), Proc. of the 22nd annual
conference of the cognitive science society, New

Jersey, USA, 2000.

[8] J. Karlgren and M. Sahlgren. Foundations of real-
world intelligence, Chapter From Words to Un-

derstanding, pages 294–308. Uesaka, Y., Kanerva,

P. & Asoh, H., 2001.

[9] T. Landauer and S. T. Dumais. A solution to

Plato’s problem : the latent semantic analysis the-

ory of acquisitionm induction and representation

of knowledge. Psychological review, Volume 104,

Number 2, pages 211–240, 1997.

[10] W. Lowe. Towards a theory of semantic space.

In J. D. Moore and K. Stenning (editors), Proc. of
the 23rd Annual Conference of the Cognitive Sci-
ence Society, pages 576–581. Lawrence Erlbaum

Associates, 2001.

[11] K. Lund and C. Burgess. Producing high-

dimensional semantic spaces from lexical co-

occurrence. Behaviour research methods, instru-
ments and computers, Volume 28, Number 2,

pages 203–208, 1996.

[12] M. Sahlgren. An introduction to random indexing.

In Proc. of Methods and Applications of Seman-
tic Indexing Workshop, Copenhagen, Denmark,

2005.

[13] L. Sitbon, P. Bellot and P. Blache. Evaluation

of lexical resources and semantic networks on a

corpus of mental associations. In Proc. of the 6th
LREC, Marrakech, Morocco, 2008.

[14] D. Widdows. Geometry and Meaning. CSLI

Publications, 2004.

[15] D. Widdows and K. Ferraro. Semantic vectors

: a scalable open source package and online

technology management application. In Proc. of
the 6th LREC, Marrakech, Morocco, 2008.

22

Exploring the benefit of contextual information for boosting TREC
Genomic IR performance

Bader Aljaber* , Nicola Stokes‡ , James Bailey* ‡‡ , Yi Li* ‡‡
* Dept of Computer Science and Software Engineering, The University of Melbourne, Australia

‡School of Computer Science and Informatics, University College Dublin, Ireland
‡‡NICTA Victoria Research Laboratory, Australia

{baljaber, jbailey, yli8}@csse.unimelb.edu.au, nicola.stokes@ucd.ie

Abstract Query Expansion is a widely used
technique that augments a query with synonymous and
related terms in order to address a common issue in
ad hoc retrieval: the vocabulary mismatch problem,
where relevant documents contain query terms that are
semantically similar, but lexically distinct. Standard
query expansion techniques include pseudo relevance
feedback and ontology-based expansion. In this
paper, we explore the use of contextual information
as a means of expanding the context surrounding
the unit of retrieval, rather than the query, which
in this case is a document passage. The ad hoc
retrieval task that we focus on in this paper was
investigated at the TREC 2006 Genomic tracks, where
systems were required to retrieve relevant answer
passages. The most commonly reported indexing
strategy was passage indexing. Although this simplifies
post-retrieval processing, retrieval performance
can be hurt as valuable contextual information in
the containing document is lost. The focus of this
paper is to investigate various contextual evidence of
similarity outside of the passage such as: query/full-
text similarity, query/citation sentence similarity,
query/title similarity, query/abstract similarity. These
similarity scores are then used to boost the rank of
passages that exhibit high contextual evidence of
query similarity. Our experimental results suggest that
document context provides the strongest evidence of
contextual information for this task.

Keywords Passage Retrieval, Contextual Document

Expansion and Ranking Strategies.

1 Introduction
Query expansion is a technique used in Information Re-

trieval (IR) to address the synonymy problem. More

specifically, a relevant document, which contains se-

mantically related words that are lexically dissimilar to

the query, will appear less related than it actually is.

This is also referred to as thevocabulary mismatch prob-
lem [3]. This is a very common problem, which affects

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

IR effectiveness more than the problem of query term

ambiguity [5]. An alternative to query expansion is doc-

ument expansion - the process of adding related terms

to the document’s representation. In this paper, we ex-

plore the use of document expansion in a passage re-

trieval task. The TREC 2006 and 2007 (Text REtrieval

Conference) Genomic track task requires the retrieval

of extracted answer passages, in response to natural lan-

guage questions. The most commonly used indexing

strategy used by track participants for this task was pas-

sage indexing. Although this simplifies post-retrieval

processing, retrieval performance can be hurt as valu-

able contextual information in the containing document

is lost by this indexing strategy. Thus, expansion tech-

niques are needed. Work in [7] investigated the im-

pact of various query expansion term types on passage

retrieval effectiveness in this Genomic IR task. The

results showed that a significant improvement can be

gained when ontologically related words (synonyms,

hypernyms, hyponyms) are used in query expansion.

In this paper, we extend the work presented by

Stokes et al. [7] by exploring different types of

contextual information as a means of expanding the

context surrounding the unit of retrieval (a passage),

rather than the query. This is a type of document

expansion. So, we investigate the use of various

sources of contextual evidence of similarity outside

of the passage such as: query/full-text similarity,

query/citation sentence similarity, query/title similarity

and query/abstract similarity. These similarity scores

are then used to boost the rank of passages that exhibit

high contextual evidence of query similarity. Our

results indicate that document context is the strongest

source of contextual evidence for this task.

Related Work. Similarly to query expansion, doc-

ument expansion can be used to overcome the prob-

lem of synonymy. Document expansion techniques, en-

rich documents off-line with related terms during in-

dexing. This type of expansion can reduce the over-

heads of query expansion at query time.

Billerbeck and Zobel [1] proposed two new

corpus-based methods for document expansion. In

the first method, each document is treated as a query

and augmented by related terms. In the second

method, each term in the corpus is treated as a

23

query and augmented by related terms and used to

rank documents accordingly. Overall, Billerbeck

and Zobel’s experiments showed that compared

with query expansion, document expansion methods

achieved relatively poor improvements. That might be

because the specific topic of the original documents is

significantly changed when related terms are added.

2 TREC Evaluation Data and Metrics
In this section, we will describe the data collection,

retrieval task and the evaluation metrics we use. All

our experiments were conducted on the document

collection used in 2006 and 2007 Genomic TREC
task1. The TREC collection consists of 162,259
full-text journal articles from 49 journals which are

electronically published via the Highwire Press site.

Besides that, 28 topics expressed as natural language

questions are also provided. Participants of the task

were required to implement a retrieval system and

submit the first 1,000 ranked passages returned by

their systems for each of the topics (Hersh et al. [4]).

Passages in this task can be defined as text sequences

that must occur within paragraph boundaries (delimited

by HTML tags). For evaluation, human judges evaluate

the relevance of passages retrieved. More precisely,

passage boundaries were defined, and each relevant

answer was assigned a set of topic tags (called aspects)

from a control vocabulary of MeSH terms. MeSH

stands for Medical Subject Headings2.

To evaluate the system effectiveness, we use Mean

Average Precision (MAP), which is considered one of

the most common IR evaluation metrics. In document

retrieval systems, the document MAP score is calcu-

lated as follows: for a given query, the average of all

the precision values at each recall point in document

ranked list is first calculated. Then, the mean of all

the query average precision scores is determined. The

TREC Genomics Track also defines a variant of this

MAP score. The Passage MAP is similar to the docu-

ment MAP. However, since passage retrieval is a ques-

tion answering task, a special metric which factors in

the length of the passages retrieved is introduced. So,

the passage MAP is calculated as the fraction of char-

acters in the system passage overlapping with the gold

standard answer, divided by the total number of charac-

ters in every passage retrieved up to that point in the

ranked list. Consequently, extra characters retrieved

will (negatively) affect the final MAP score.

Stokes et al. [7] defined another version of the MAP,

called the paragraph MAP score. The paragraph MAP

calculates the fraction of paragraphs retrieved that con-

tain a correct passage, divided by the total number of

paragraphs retrieved. As before, the average of these

scores at each recall point is the final score for that

topic. In this metric, extra characters retrieved cannot

1http://ir.ohsu.edu/genomics/2006protocol.html
2MeSH terms are managed and created by the United States

National Library of Medicine (NLM), http://www.nlm.nih.gov

affect the final MAP score and the system will get “full-

marks” if it returns the paragraph that the gold standard

passage occurs in.

In our experiments, Mean Average Precision (MAP)

is used to evaluate system performance at three different

levels of information granularity: Passages, Documents

and Paragraphs.

3 System Description
In this paper, we augment an IR query expansion

system first proposed in [7]. The authors introduced

a novel concept normalization ranking metric, which

maximizes the impact of query expansion in the

genomic domain. More specifically the system ensures

that documents containing multiple unique concepts

are ranked higher than those which make reference to

the same concept multiple times; and expansion terms

(synonyms and related terms) for the same concept are

not given undue influence by the ranking metric.

Briefly, we will describe the genomic retrieval

system presented in [7] with emphasis on the part

that we will extend; followed by an explanation of

our extension to the system. The architecture of

that genomic retrieval system is shown in Figure 1.

The data collection is first prepared and separately

indexed on paragraph and other contextual information

representations; a query is then taken and expanded

with synonyms found in other external resources such

as MeSH terms which stand for Medical Subject

Headings. Based on that, two sets of ranked outputs

are retrieved. First, a set of candidate paragraphs is

retrieved based on paragraph indexing and then ranked.

Second, a set of documents is retrieved based on

the indexing of other contextual information such as

the document contexts (that is the original document

representation) and then ranked. The candidate

paragraphs are reduced (that is what we will call later

as a passage reduction) in order to extract relevant

answer passages to the query (in our case, queries are

natural language questions). These extracted passages

are then ranked and presented to the user. The overall

process is referred to as a PASSAGE run.

Figure 1: The architecture of the passage retrieval system.

24

Stokes et al. [7] found that query expansion with

synonyms from domain-specific terminology resources

achieves a significant performance over a baseline

system. Further, improvements in Passage MAP score

were achieved when the passage reduction process was

performed on retrieved paragraphs. However, although

Passage MAP increased significantly (from 0.108 to

0.127), Document level MAP drop significantly (from

0.534 to 0.507).

To address this problem, Stokes et al. [7] proposed

a new passage re-ranking method which considers both

the relevance of the passage to the query, and incor-

porates the relevance score of the document containing

that passage. In other words, the similarity scores of

the retrieved passages are linearly combined with the

similarity scores of their containing documents. This

method boosts Passage and Document MAP scores and

can be summarized as follows:

1. First perform query expansion, query the index,

and then use passage extraction and re-ranking to

find the top 1000 passages for each query. A query

is defined as a set of concept and non- concept

terms or phrases. For example, the query “What

is the role PRNP in Mad Cow Disease?”, has two

concept terms ‘PRNP’ and ‘Mad Cow Disease’

and one non-concept term ‘role’, the rest are stop-

words. By splitting the query in this manner, we

can ensure that the occurrence of less informative,

non-concept terms do not have an inflated weight

of importance in the similarity calculation.

2. The top 1000 passages are then divided into dif-

ferent concept level groups. That is, we group

documents in the ranked list based on the number

of query concept terms they contain, where docu-

ments with all query concepts reside at the top of

the ranked list.

3. Within each group, passages are re-ranked by

combining their similarity scores with their

containing document’s similarity score.

So, for a passage i which has a similarity score Pi
and whose containing document has a similarity score

Di, the final combination score Si is calculated as:

Si = Pi × Di

Dmax
× Pmax (1)

where Pmax and Dmax are the maximum similarity

scores of all the 1000 passages and their containing

documents.

Our Contribution: Our extension to the work in

[7] is based on the investigation of additional types of

contextual information for re-ranking the retrieved pas-

sages, in order to attain better IR performance for this

task. In other words, as well as using the document con-

text’s similarity scores in re-ranking the retrieved pas-

sages, we also examine and evaluate the effect of using

similarity scores based on different types of contextual

information, which are outlined in the next section.

4 Experimental Results
It has been shown in [7] that when the document

context’s similarity scores are used to re-rank retrieved

passages, MAP score increases for both Passage level

MAPs (that is, from 0.108 to 0.137) and document

level MAPs (that is, from 0.534 to 0.543) are observed.

Hence, as already mentioned, use this result to motivate

our investigation of exploring the benefit of using other

contextual information for boosting TREC Genomic

IR performance such as Citation Contexts, Titles,

Abstracts and MeSH terms.

A citation context is essentially the text surround-

ing the reference markers (e.g the ‘cite’ command in

LaTeX) used to refer to other scientific works. These

citation contexts are essentially descriptive fragments

and are likely to contain synonymous or related terms

to the document being cited. Consequently, they can

be used as an alternative representation of the contents

of a document. Citation contexts have been used by a

number of techniques in information retrieval [6].

From the entire collection, we were able to extract

the citation contexts for 3475 documents. More specif-

ically, we have omitted documents which have been

rarely cited by other documents in our collection, as

no meaningful citation representations can be used for

these documents. Also, we have used a fixed citation

window size of 50 terms before and after the citation

marker as suggested by Bradshaw [2].

Experimental results shown in this paper present the

MAP scores of the system at the Passage level, Docu-

ment level and Paragraph level (that are paslev, doclev

and parlev respectively) for the following system runs:

• Baseline: the best expansion run presented in [7].

• PASSAGE: the baseline system when paragraphs

are reduced to answer passages (called passage re-

duction in the previous section).

• PASSAGE + Doc: the PASSAGE run where the

retrieved passages are re-ranked using the Docu-
ment context’s similarity scores.

• PASSAGE + Cit: the PASSAGE run where re-

trieved passages were re-ranked using the Citation
context’s similarity scores.

• PASSAGE + Title: the PASSAGE run where the

retrieved passages were re-ranked using the Title
context’s similarity scores.

• PASSAGE + Abstract: the PASSAGE run where

the retrieved passages were re-ranked using the

Abstract context’s similarity scores

• PASSAGE + MeSH: the PASSAGE run where the

retrieved passages were re-ranked using the MeSH

context’s similarity scores.

25

Looking at Table 1, we can see that at the passage

(paslev) and paragraph (parlev) MAP scores, show

performance improvements over the baseline run. Not

only that, but at the passage level MeSH contexts

(PASSAGES +MeSH) can marginally outperforms

document contexts (PASSAGES + Doc). While, at the

document evaluation level (doclev), no representation

can obtain better than the PASSAGE + Doc run score.
paslev MAP doclev MAP parlev MAP

Baseline 0.108 0.534 0.356

PASSAGES 0.127 17.84% 0.507 -5.05% 0.362 1.78%

PASSAGES + Doc 0.137 27.13% 0.543 1.67% 0.384 8.01%

PASSAGES + Cit 0.119 10.33% 0.500 -6.42% 0.353 -0.83%

PASSAGES + Title 0.126 16.94% 0.508 -4.88% 0.363 2.15%

PASSAGES + Abstract 0.123 14.42% 0.525 -1.71% 0.376 5.75%

PASSAGES + MeSH 0.138 28.21% 0.519 -2.74% 0.365 2.71%

Table 1: Table showing the effectiveness of re-ranking passage

retrieval results (that is PASSAGES) with other contextual evidence

of query/passage similarity.

Table 2 presents a second set of context

experiments, where in this case every containing

document of a passage is now represented by a

combined representation, which combines either its

title, abstract or MeSH terms with its citation contexts

(if any), that is PASSAGE + (Title+Cit), PASSAGE +
(Abstract+Cit) and PASSAGE + (MeSH+Cit)). For

the addition of citation context terms, despite the

fact that some minor increases at particular MAP

levels can be seen, overall the results are inconsistent.

This may be explained by the fact that in many

cases we do not have sufficient citation sentences to

make up a citation representation for a combining

document. A final combination run is also included in

this table which combines all contextual information

(PASSAGES + (Abs+Title+MeSH+Cit)). However, the

PASSAGE+DOC run still performs this. Using a paired

Wilcoxon signed-rank test, this PASSAGE+DOC run

was found to be statistically significant better (at all

MAP levels) when compared with the baseline and

PASSAGE runs at the 0.05 confidence interval.
paslev MAP doclev MAP parlev MAP

Baseline 0.108 0.534 0.356

PASSAGES 0.127 17.84% 0.507 -5.05% 0.362 1.78%

PASSAGES + Doc 0.137 27.13% 0.543 1.67% 0.384 8.01%

PASSAGES + (Title+Cit) 0.124 15.17% 0.508 -4.88% 0.363 2.22%

PASSAGES + (Abstract+Cit) 0.123 14.32% 0.526 -1.58% 0.376 5.77%

PASSAGES + (MeSH+Cit) 0.135 25.43% 0.518 -2.90% 0.362 1.86%

PASSAGES + (Abs+Title+MeSH+Cit) 0.127 17.87% 0.528 -1.16% 0.380 6.79%

Table 2: Table showing additional combinations of context infor-

mation, which are used to re-rank passages returned by the PASSAGE

run.

The results in Table 3 show MAP scores for the top

performing systems on the TREC 2006 Genomic Track

tasks. TREC MEDIAN refers to the median values of

each MAP score for the official TREC results. Okapi

BM25 is the baseline used in the task. Some of the

other top performing runs have a detailed description

given in [7]. We can see that the majority of MAP

scores achieved by our context re-ranking runs outper-

form the scores of these system, with the exception of

UIC SIGIR and UIC SIGIR for document level MAP

score.

Discussion. In summary, a number of conclusions

can be drawn from our experiments:

Run paslev MAP doclev MAP parlev MAP

TREC MEDIAN 0.037 0.308 0.124
UIC GenRun3 0.123 0.532 0.342
THU2 0.099 0.434 0.265
NLMinter 0.084 0.473 0.272
UIC SIGIR NA 0.539 NA
Okapi 0.048 0.336 0.137

Table 3: Table showing performance of the top performing TREC

systems on the Genomics Track.

• The use of the document context brings the best IR

performance at passage, document and paragraph

level MAPs

• The use of other contextual information, especially

abstracts and MeSH terms, can also boost IR per-

formance compared with baseline system, particu-

larly for passage and paragraph level MAPs

• In the absence of the availability of the document

context (since the source of many documents

is not easily/freely available), the use of other,

publically available information contexts (such

as MeSH terms, Abstracts and Titles), is a useful

way to improve IR performance.

• Use of citation contexts appears promising for im-

proving IR performance. However, it is difficult

to obtain citation contexts for most documents. In

our collection, only 2.14% of documents could be

sufficiently described using citation contexts.

5 Conclusions
A successful implementation of the retrieval ranking

method using different types of contextual information

can deliver further improvements. In particular, for this

passage retrieval task we found that MeSH terms and

Document similarity contexts, further boost the perfor-

mance of an already competent query expansion infor-

mation retrieval system.

References
[1] B. Billerbeck and J. Zobel. Document expansion versus query

expansion for ad-hoc retrieval. In the 10th ADCS, pages 34–41,

2005.

[2] S. Bradshaw. Reference directed indexing: Redeeming relevance

for subject search in citation indexes. In the 7th ECDL, pages

499–510, 2003.

[3] G. Furnas, T. Landauer, L. Gomez and S. Dumais. The vocabu-

lary problem in human-system communication. Communications
of the ACM, Volume 30, Number 11, pages 964–971, 1987.

[4] W. Hersh, A. Cohen, P. Roberts and H. Rekapalli. Trec 2006

genomics track overview. In The 15th TREC, November 2006.

[5] R. Krovetz and W. Croft. Lexical ambiguity and information

retrieval. ACM Trans. Inf. Syst., Volume 10, Number 2, pages

115–141, 1992.

[6] A. Ritchie, S. Teufel and S. Robertson. Using terms from

citations for ir: Some first results. In the 30th ECIR, pages 211–

221, 2008.

[7] N. Stokes, Y. Li, L. Cavedon and J. Zobel. Exploring criteria for

successful query expansion in the genomic domain. Information
Retrieval, 2008.

26

WebKnox: Web Knowledge Extraction

David Urbansky
School of Computer Science and IT

RMIT University
Victoria 3001 Australia

davidurbansky@googlemail.com

James A. Thom
School of Computer Science and IT

RMIT University
Victoria 3001 Australia

james.thom@rmit.edu.au

Marius Feldmann
Department of Computer Science
University of Technology Dresden

Germany

feldmann@rn.inf.tu-dresden.de

Abstract The paper describes and evaluates a system
for extracting knowledge from the web that uses a do-
main independent fact extraction approach and a self
supervised learning algorithm. Using a trust algorithm,
the precision of the system is improved to over 70%
compared with a baseline of 52%.

Keywords Information Extraction, Web Mining

1 Introduction
Given the vast quantity of repeated information avail-

able on the web, it has become possible to more reliably

extract factual knowledge about many different entities.

Therefore it is useful to have a automatic approach that

finds pages containing facts and extracts the best an-

swers. This paper describes and evaluates a system

WebKnox (Web Knowledge eXtraction) for extracting

knowledge from the web.

WebKnox’s input consists of the following parts:

1. The concepts, e.g. Car or Country.

2. The attributes for each concept. The attributes

determine which facts are searched for each entity

in the concept. E.g. for the Country concept

attributes could be population and capital.

3. The entities for each concept. The entities and

attributes together build the templates that are

filled in the fact extraction process. E.g. for the

Country concept, Australia and Germany are

valid entities.

The following are the main contributions in this

paper. We present a domain independent fact extraction

approach that retrieves web pages with factual

information, analyzes those semi-structured pages,

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

and extracts facts from generic structures and formats

that commonly occur on websites. We introduce a

self supervised learning algorithm that automatically

estimates the precision of the different structures used

to extract the facts. We show how the extraction

precision for numeric values can be increased by cross

validating them with numeric values from other entities

of the same concept. We demonstrate how a trust value

can be assigned to the extracted facts which is used to

rank the extractions and help the end user determine

which facts can be trusted.

2 Background
2.1 Web Information Extraction
This section gives background information about infor-

mation extraction in general and the extraction tasks for

the web in particular.

In contrast to information retrieval (IR), where the

task is to find relevant information for a given query

and to rank the results, information extraction (IE) is

the process of extracting information to a given target

structure such as a template or an ontology. The IE

tasks are defined by an input (e.g. an HTML page) and

an output (e.g. a populated database) [2].

There are several main tasks in information extrac-

tion.

1. Named Entity Recognition (NER) is the task that

identifies entities in a given text. It is the easiest

task, however it is more recognition than extrac-

tion because no new entities are extracted.

2. Coreference Resolution (CO) identifies identity re-

lationships between entities in texts.

3. Entity Extraction (EE) is the task of discovering

new instances of a concept.

4. Fact Value Extraction (FVE) is the task of finding

values for given attributes for a given entity. e.g.

27

the entity “Australia” and the attribute “popula-

tion” are given and the value for the attribute is

searched.

5. Fact Extraction (FE) is a similar task to FVE but

no attributes are given for the extraction process.

2.1.1 Web Information Sources

The choice of the information extraction technique de-

pends on the format of the source. The world wide web

consists of documents that belong to one of the three

main types of sources: unstructured, semi-structured

and structured.

In web information extraction, semi-structured

sources are mainly HTML files. That is because they

contain lots of unstructured data as texts but use tags to

structure that data for rendering purposes.

Internal Representation Before examining the main

techniques that access and extract from these web

sources it is important to understand that the content

can be represented in two main forms.

1. A hierarchy of nodes represents the source as a tree

of nodes (such as element or text nodes). This rep-

resentation is usually instantiated using the Docu-
ment Object Model (DOM).

2. A tokenized string represents the source as a

parsed string of words, numbers etc. (so called

tokens). This representation is often used for free

text as there is no other structure that can be used

to represent the information.

2.1.2 Information Extraction Techniques

Natural Language Processing (NLP) can be

employed for web information extraction using a set

of techniques that make the natural language more

machine readable. Those techniques are for example

tokenization, sentence splitting, orthomatching
(coreference resolution) and regular expressions.

Wrapper Induction “A program that makes an exist-

ing website look like a database is called a wrapper.”

[3]. Wrappers perform pattern matching to find the

information of interest. The main goal in learning a

wrapper is to find a general description of what the

information that is supposed to be extracted looks like.

Writing a wrapper by hand is labor intense and over the

time more automation has been introduced. Chang et al.

[2] classify these wrapper techniques in four categories

with increasing automation:

1. manually-constructed wrappers. The user writes

a wrapper for every web site he wants to extract

information from which means that he has to

have a profound understanding of programming

languages. That requirement makes it however

impractical for a broad domain approach.

2. supervised wrapper construction. For supervised

learning a wrapper, a human labels information on

a set of HTML pages he wants to have extracted.

These labels are taken as positive examples for

the learning algorithm. Non-labeled data serves

as negative examples. The user does not need any

programming knowledge but needs only to be able

to mark up the content or use a graphical user in-

terface to do that.

3. semi-supervised wrapper construction. Semi-

supervised systems require the user not to give a

whole exact labeled set of web pages but rather

guess extraction patterns on given examples.

The user then has to decide which pattern is the

correct one, thus the extraction process becomes

supervised.

4. unsupervised wrapper construction. The unsuper-

vised approach requires no user interaction. While

former approaches needed a user to specify the

data of interest, the extraction target in supervised

extraction are data rich regions of the website [2].

Wrapper induction techniques are primarily used

for structured or semi-structured sources as many

techniques rely on the DOM tree.

2.1.3 Correctness of Extracted Information

Traditional IE focuses on extracting as much informa-

tion as possible from a small corpus whereas web infor-

mation extraction systems often rely on the redundancy

of web content [6]. That means that the focus of the ex-

traction techniques should be set on the precision as the

recall automatically comes with many mentions of the

entity or fact that is extracted. One major problem with

web information extraction systems is that the quality

of the extractions can vary, i.e. extracted entities may

not really belong to the concept they were assigned to

or facts are wrong.

Simple Scoring For the fact extraction task a simple

scoring, based on the number and quality of sources

can be used to decide which fact extraction is correct

and which is not [7]. The effectiveness of simple scor-

ing relies however on the assumption that correct facts

are extracted more often than incorrect facts which also

depends on the extraction technique and the type of

the fact. Rare facts for example might be extracted

correctly but do not score very high.

Pointwise Mutual Information Etzioni et al. [4] use

patterns as discriminators to ensure the correctness of

an extracted fact or entity. That means they use these

discriminators as queries for web search engines and

calculate pointwise mutual information (PMI) between

the extraction and the discriminator with the hit counts.

If E is an extracted entity and D is the discriminator

phrase, the PMI can be calculated as in the Equation 1.

28

PMI =
Hits(E + D)

Hits(E)
(1)

2.2 State-of-the-art Systems
KnowItAll [4] is a domain independent, unsuper-

vised system that automatically extracts entities and

facts from the web. KnowItAll is redundancy-based

which means it relies on the assumption that a fact or

entity occurs many times on the web. The system’s

strength is finding new entities for a given class (EE

task). To do that, it uses a set of domain independent

patterns and queries a search engine with that pattern.

The input for KnowItAll is a set of concepts, at-

tributes and relations. The extractor module queries

search engines with extraction patterns and performs a

shallow syntactic analysis. A discriminator is an extrac-

tion pattern with alternative text. The assessor module

queries search engines with discriminators to validate

a particular extraction and ensure the precision of the

system. For that purpose, KnowItAll uses PMI.

KnowItAll is specialized in extracting entities and

has its limitations in extracting facts. It can extract

entity relations found in free text but much information,

especially numbers (e.g. the population of a country) is

given in table structures that are not evaluated by Know-

ItAll. Also the PMI score for validating the extractions

would most likely not work with numeric extractions.

Textrunner [1] goes one step further beyond the ca-

pabilities of KnowItAll, as it does not require any user

input which is more scalable and easier to apply for new

domains. Its only input is the corpus of web pages, and

information is extracted in a single pass. This happens

in three steps for every sentence read: (1) The noun

phrases of the sentence are tagged, (2) nouns that are

not too far away from each other are put into a candidate

tuple set and (3) the tuples are analyzed and classified

as true or false.

GRAZER [7] is a system that corroborates and

learns new facts. The input for GRAZER are seed

facts (attribute-value pairs) for given entities. Entities

and seed facts are automatically generated using

specialized wrappers. For the given entities, relevant

pages are obtained. Relevant pages are those that have

a mention of the entity. On these pages the seed facts

are corroborated and new facts are extracted. The

system searches for mentions of the seed facts on the

relevant pages and adds the source if the fact was found

on the page. The corroboration happens in free text and

in structured HTML as all tags are removed and only

the area around the attribute name is searched for the

mention of the value.

Although GRAZER does not need an ontology

about the knowledge domain as an input it relies on

a set of seeds for entities and facts. These seeds are

obtained in an non generic way by inputting the data

by hand, which is labor intense or by scraping sources

with specialized wrappers. The same facts are extracted

several times and are treated as new facts when they

have a different attribute which is just a synonym, e.g.

“Birthday:17.01.1962” is another fact than “Date of

Birth:17.01.1962”.

3 Design
This section introduces the design of our system for fact

extraction from the web. First, the knowledge to be

extracted is encoded in an ontology, then entities are

given, and then the fact extraction process automati-

cally finds the values for the specified attributes.

3.1 Knowledge Representation
Before the extraction process can start WebKnox needs

to know what concepts, attributes and entities exist.

This knowledge is called prior knowledge. The prior

knowledge for WebKnox is modeled in an ontology

using OWL. Therefore, all concepts and attributes are

defined in the knowledge ontology and the entities and

facts that are extracted are stored in another separate

data ontology.

The purpose for the knowledge ontology is (1) to de-

fine the knowledge represented in the data ontology and

(2) to serve as an input for the extraction process. In the

knowledge ontology every attribute gets an OWL data
type property assigned to it. This determines which type

of value the attribute will have and can be used for (1)

other programs reading the ontology, trying to parse the

data and (2) for the extraction process to know which

values on a source are candidates for the attribute. A

datatype property can have any XSD datatype1 but We-

bKnox only uses the following:

1. String: A string is a sequence of characters, We-

bKnox will however only consider proper nouns

as fact candidates for a string attribute, i.e. only a

sequence of words starting with a capitalized char-

acter or a number are considered to be possible

answers.

2. Boolean: Attributes with a boolean value can

either have true or false as a value. WebKnox

searches boolean values only in tables and looks

for “yes” and “no” occurrences.

3. Decimal, Double, Float, Integer, Int, Long:

These are numeric attributes which are all handled

equally by WebKnox. Every numeric attribute

is handled as a double and only occurrences of

numbers are extracted as fact candidates for the

attribute.

4. Date: An XSD date is a string given in a

standardized UTC format: YYYY-MM-DD.

WebKnox will look for several representation of

dates on web sources and tries to transform these

back to the UTC format.

1http://www.w3.org/TR/xmlschema-2/#d0e11239

29

5. AnyType: Attributes with values that do not

match any previously mentioned data type can

have the AnyType property. WebKnox takes all

characters around or after the attribute on the web

source into account when determining the fact

candidates. Thus AnyType can be used for strings

that are not proper nouns.

3.2 Fact Extraction
The first process is the retrieving of the source pages

which gets an entity and its attributes as input. The

extraction process then extracts the values for the en-

tity’s attributes from the websites retrieved. The ex-

tracted facts are normalized and eventually the trust in

the extractions is calculated.

3.2.1 Retrieving Fact Pages

Retrieving relevant pages that host the searched facts

is a crucial process that has to be tightly coupled with

the extraction process. As input data the source re-

trieval process gets the names of the entities and at-

tributes that are being searched for. The process then

queries a search engine and outputs the retrieved pages

together with information about which attributes are ex-

pected on the page. This output is fed into the extraction

process. The focus lies on retrieving semi-structured

HTML pages as they are easy to access via generic

search engines as Google2.

To retrieve pages that have the searched facts

present, WebKnox uses two kinds of generic queries.

The first kind is called multi-attribute query, it tries

to find pages relevant to the entity and extract all

searched facts from the retrieved pages (e.g. the query

“Australia”). The second kind is the single-attribute
query and is focused on each single attribute, i.e. it

queries the search engine with attribute specific terms

(e.g. the query “Australia population”).

The retrieved websites are then passed to the fact

extraction process. The fact extraction process also gets

information about the type of the query so that it only

looks for a single attribute on single attribute pages and

tries to find all attributes on general fact pages retrieved

by multi-attribute queries.

3.2.2 Exploiting Structure and Format of Web
Pages

The quality of extracted facts can be increased by using

different extraction structures for different types of fact

appearances. As covered in the background a com-

mon approach for fact extraction is to use the com-

plete website content and simply remove all HTML tags

(as done by the GRAZER system [7]). That however

also removes all advantages that come with the semi-

structured type of HTML documents. WebKnox differs

from current approaches as it takes the extraction struc-
tures, i.e. the different generic formats and structures

2http://www.google.com

into account that are used to represent facts on web

pages.

Definition 1 (Extraction Structure). An extraction
structure is the pattern or format the extracted fact is

represented on a source.

These extraction structures are phrases, tables,

colon patterns and free text.

Phrases are natural language representations

of facts for a specific entity. For example the

phrase “The capital of Australia is Canberra” is

used on a website. The phrase covers the fact

capital:Canberra for the entity Australia. Ideally

the searched value for the attribute appears right

after the “is” in the phrase. WebKnox uses only

two phrases: the ATTRIBUTE of ENTITY is and

ENTITY’s ATTRIBUTE is. These phrases are also

used by the source retrieval process to discover pages

that state these phrases.

Tables are important HTML structures on the web

that are used to represent many facts, which led to

numerous wrapping techniques. Keeping the HTML

structure allows to traverse in the DOM Tree of the

website and find corresponding attribute-value pairs

in tables. Figure 1 shows an example3 of a rendered

HTML table in a) and the DOM representation of that

part in b). That is a very easy example of a table but

also a very common one. By identifying the td-element

with the attribute, the sibling td-element with the value

can be found and only the text inside that element is

extracted.

Figure 1: A table for mobile phone specifications

Colon pattern is the text that is right after a colon

(“:”). Often facts are given in an unstructured way (no

tags) but with the format ATTRIBUTE:VALUE so that

only the text after the colon needs to be extracted. Fig-

ure 2 shows an example4 of this representation, where

3Table from http://gsmarena.com/nokia n95-1716.php
4Data from http://engadget.com/2008/08/30/

msis-wind-u90-to-boast-8-9-inch-display/

30

a) depicts the HTML rendered version while b) shows

the text as it is seen when the separating tags are re-

moved (replaced with whitespace). If one would try to

extract the processor attribute (PROC), expecting a nu-

meric value and not noticing the format, the 2008 would

be extracted as it is closer to the processor attribute than

the correct value 1.6GHz after the colon. The colon

pattern can therefore help increasing the fact extracting

precision in a very simple manner.

Figure 2: An example for fact representation in a colon

pattern, a) shows the presentation in rendered HTML,

whereas b) shows the data when tags are removed

(replaced with white space)

Free text is the absence of structure (tags) and ad-

ditional format (phrase or colon pattern). Facts can

also appear in long paragraphs of text but as no further

information about the structure and format is given, all

text around the attribute has to be considered as a valid

answer for the attribute’s value. It is assumed that al-

ways the next matching value closest to the attribute is

extracted. WebKnox takes the sentence in which the

attribute appears as the boundary. This way incorrect

information further away is not extracted as well. Using

information found in free text increases the recall and

must be considered, especially for rare facts that do not

appear in tables or other structures and formats.

Some extraction structures are more reliable than

others. It is also necessary to take all possible extraction

types as it increases the recall and some facts can only

be found looking in a certain structure. The trust in the

fact values extracted by a structure must therefore take

the employed extraction structure into account. The

next section describes how the trust in extracted facts

is calculated.

3.2.3 Calculating the Trust in Extractions

Once values for attributes have been extracted, they

need to be ranked in order to determine the value that

is most likely to be the correct one for the attribute. It

is now necessary to find the correct ones by assigning

trust to each extraction.

Definition 2 (Trust). The trust is a non negative num-

ber. The higher the number the more reliable the ex-

tracted value.

The following equations assign trust values and aim

to improve the ranking of the extracted values, i.e. to

put the correct ones on top.

The easiest way to rank the extracted values it

by just counting the number of extractions. The

more often a value has been extracted, the higher the

trust value. Equation 2 shows how the trust value is

calculated in that case, with N being the number of

extractions for the given value, and x being a tuple

consisting of concept, entity, attribute and value,

x =< xconcept, xentity, xattribute, xvalue >. This way

of assigning a trust value is called “Quantity Trust”

from now on.

QuantityTrust(x) = N (2)

The Quantity Trust does not make use of additional

information like where (the source) and how (extrac-

tion technique/structure) the fact was extracted. This

information must be considered when determining the

trust for an extraction.

Determining the Source Trust Some pages that

are retrieved for the extraction process mention the

attribute and its value several times. For example,

suppose a page that is retrieved, when searching for

the entity Nokia N95 and the attribute talk time,

mentions the attribute several times, two times with

the correct value of 6.5 hours but three times with

different values that do not relate to the entity but to

other mobile phones. The source trust can therefore

be reduced whenever there is more than one value for

the searched attribute as shown in Equation 3, where

D is the number of different values found for the given

attribute and source. The source trust can have values

between 0 and 1 with one being highest trust and zero

being no trust.

SourceApplicability(attribute,source) =
1
D

(3)

Determining the Extraction Structure Trust
Extraction structures have different precisions that

must be taken into consideration when calculating the

trust for a fact value. The values determined in the

test set are not representative for all possible concepts

and domains. Since WebKnox aims to be domain

independent, the precisions determined for the test

set cannot be taken as references. WebKnox uses self

supervised machine learning to automatically estimate

the trust for the four extraction structures used. The

trust value for the extraction structures is an estimated

precision, i.e. it is a number between 0 and 1 with one

being highest trust (all extractions were correct) and

zero being no trust (all extractions were incorrect).

For all extraction structures e, information about the

number of extractions N(e), and the number of correct

extractions C(e) is kept. The ExtractionStructureTrust

is then calculated as the ratio of correct extractions to

total extractions (Equation 4):

ExtractionStructureTrust(e) =
C(e)
N(e)

(4)

Initially all extraction structures are initialized with

a trust value of 0.5. The three steps are then as follows:

1. The input for the first step is the extraction result

with an assigned trust. In the first step the high-

est trusted fact is searched throughout all concepts

31

and attributes. It is then assumed that this fact

is really a correct one, since it has a high trust.

All extraction structures used to extract that very

fact value get credit for a correct extraction, i.e.

, C ′(e) = C(e) + 1 and N ′(e) = N(e) + 1.

Extraction structures that led to wrong fact values

for that attribute, get credit for a wrong extraction,

i.e. N ′(e) = N(e) + 1. In the next iteration that

highly trusted fact is not considered anymore when

looking for the highest trust.

2. In the second step, the trust for the extraction

structures is updated based on the number of

correct and total extractions that have been revised

in the former step, i.e. the extraction structure

trust is recalculated using Equation 4.

3. In the third step, the trust for all extracted val-

ues is recalculated by using the updated trust for

the extraction structures. After this step, the rank-

ing of the extracted values for each attribute might

change. The newly ranked list is then again input

for the first step to repeat the process. The itera-

tion can be stopped when the trust for the different

extraction structures converges. In case the trust

does never converge, the iteration will only stop

after all highest trusted facts have been evaluated

in step one.

Combining Source and Extraction Structure Trust
Taking both, the source trust and the trust in the extrac-

tion structure, into consideration, the trust for an ex-

tracted value can be calculated as shown in Equation 5.

S is the set of sources the given fact has been extracted

from, ExtractionStructureTrust(e) is the trust of the ex-

traction structure e used and SourceApplicability(s) is

the trust for the source s. The trust will therefore be

high, when the value has been extracted in many trust-

worthy sources using numerous highly trusted extrac-

tion structures. This trust formula shall be called “Com-

bined Trust”.

CombinedTrust(x) =∑
s ε S

(
∑
e ε E

ExtractionStructureTrust(e) ∗

SourceApplicability(xattribute, s)) (5)

Normalization Facts can be represented in different

formats which still represent the same thing. For

example dates can be written in many ways, such as

January, 17th 1962 or 17/01/1962. Also many

numeric facts have units. Not taking the unit into

account leads to the extraction of two different facts

where actually only one is mentioned, e.g. 2 inch and

5.08 cm is the same fact. Normalization helps to find

facts from different formats and to cluster them.

Validating Numeric Fact Values across Entities
Another problem with extracted facts is that some

attributes do not have a single absolutely correct

value. The population attribute for example is not

mentioned correctly on any website on the entire

web as it changes almost every second. Instead

there are values that are almost the same and can be

considered correct. Fact values for attributes with

fuzzy values tend to not corroborate well. For example,

the following fact values might have been extracted for

the population attribute for Australia:

300 (3 times)
21000000 (1 time)
21340000 (1 time)
22578420 (1 time)
20452340 (1 time)

The problem here is that the exact same number for the

population is not mentioned on more than one source.

The incorrect extraction 300 however is extracted sev-

eral times and therefore gains higher trust.

To solve that problem, two assumptions are made:

1. The order of magnitude (OOM) for numeric facts

is often the same for entities within the same con-

cept; there are exceptions such as the population

of countries.

2. There are well-known entities where the informa-

tion about the numeric attribute can be extracted

with relatively high trust because they appear on

very many pages.

Both assumptions were supported in our test set for

most of the fact values. A bigger test set with more

entities (and more well-known ones) would most likely

further support that assumption.

To make advantage of the fact that the OOM is often

the same, WebKnox uses a validation process across

all entities for a given attribute. This process is called

“Cross Validation” and is part of the second step in the

self supervised learning loop. It works as follows:

1. For all numeric attributes, an OOM distribution is

constructed.

2. If the highest trusted value from the first step of

the learning loop is a numeric value, the number

is considered to be correct and the OOM of that

number is given credit in the attribute’s OOM dis-

tribution.

3. In the next iteration the trust for the fact values

for the same attribute will be calculated as shown

in Equation 7. The CrossValidationFactor for a

numeric fact value is one plus the support of the

OOM, which is a number between 0 and 1 with 1

being 100% support (all other entities of the con-

cept had values with exactly the same OOM for

that attribute) and zero being 0% support (no other

entity of the same concept had the same OOM for

that attribute).

32

CrossValidationFactor(x) =
1 + support(�log10(xvalue)	, xconcept) (6)

CrossValidationTrust(x) =
CombinedTrust(x)) ∗ CrossValidationFactor(x) (7)

4 Evaluation
The Test Set contains six different concepts (five en-

tities each) and five data types. In total there are 255

facts to extract.

The entities for each concept were chosen

manually by applying following criteria to gain a more

representative sample for each concept: Notebooks,

Mobile Phones and Cars were chosen from different

manufacturers; small and large Countries were

chosen; Movies were chosen based on popularity; and

only well known Actors were chosen.

For the evaluation, 2420 HTML pages were

retrieved using the REST web service from Yahoo!5.

Each entity was searched for using two multi-attribute

queries and each attribute of an entity resulted in three

single-attribute queries. For each query, only the top

eight retrieved URLs were used for the fact extraction

process. Not all queries led to eight answers from the

search engine, in that case all answers were taken.

The standard measures for comparing extraction

systems are precision and recall. In web information

extraction, the precision measures the ratio of correctly

extracted facts or entities to the total extractions,

and the recall measure determines the ratio of the

performed extractions and the extractions expected.

Additionally, the measure found is used several times.

Found is the ratio of extracted facts (correct or not) to

expected facts. A found value of one means, that for

every attribute at least one value has been extracted. If

not otherwise stated, the measures always relate to the

complete test set of the WebKnox system.

Baseline Basically two different approaches are used

today: (1) wrapper induction and extracting from tables

and (2) treating the website as a long (tokenized) string

by removing the tags. As the developed approach ex-

tracts information not only from tables it is appropriate

to compare it to the latter technique.

The baseline extraction works similar to the tech-

nique from the GRAZER system [7]. All tags are re-

moved from the website, all occurrences of the attribute

are evaluated and the corresponding fact values are ex-

pected before or after the attribute. Only the first 150

characters before and after the attribute are searched

for the matching value to delimit noise. The trust is

calculated only by counting the number of extractions

(Quantity Trust).

5http://developer.yahoo.com/search/

Evaluation of Source Retrieval WebKnox uses a set

of generic queries to retrieve websites from a search

engine that are likely to have a mention of the facts

searched for. When retrieving the top eight results, 95%

of the facts were found. All further evaluations for the

fact extraction rely on the test set that was gained by

taking the top eight results from Yahoo! for all queries.

Evaluation of Extraction Structure Trust Learning
Figure 3 shows the learned trust values for the four

extraction structures after every iteration of the learning

loop. The dashed lines visualize the manually deter-

mined precision values in the test set for each extrac-

tion structure and the solid lines are the automatically

calculated trust values from the learning loop. All trust

values were initialized with 0.5. The graphic shows that

the free text (red) and table (green) extraction struc-

ture do not change very much after the first forty it-

erations. The phrase and the colon pattern extraction

structure however, seem to drop an raise quickly even

after 40 iterations. This behavior is due to the occur-

rences of these structures. The “found” value for these

two structures was lower than for free text and table,

which means that the extraction structure occurs more

rarely and therefore it takes longer to gain a stable trust

value. The loop did not stop before all iterations have

been performed since the trust values did not converge

so far. 172 iterations was the maximum for the test set

with 255 facts since not all facts have been found. After

172 iterations, three of the four extraction structures got

an automatically assigned trust value that is in a 4%

margin to the “correct” precision value for the extrac-

tion structure in the test set. The highest discrepancy

can be seen with phrase that is 5.2% away from the

correct trust value. This again can be explained by the

low occurrence number, only every fourth fact can be

found by the phrase extraction structure. The black line

in Figure 3 depicts the overall precision of WebKnox.

It is shown that the precision does in fact increase as

the extraction structures get trust values closer to their

real precision. Through the learning loop, an overall

precision gain of 7.4% is gained, recall is also affected

positively with an increase of about 7%.

Cross Validation When comparing the extraction

precision for the numeric data type we find that (both

with and without crossvalidation) WebKnox found 143

of the 145 numeric facts in the test set. The learning

loop was performed 172 times in both cases, until no

more iteration was possible. Without cross validation

63.19% of the extracted numeric values were correct.

Using cross validation showed a gain in precision of

almost 7% to 70.13%. The difference between the

baseline and WebKnox for numeric fact values now

increases to over 25% in precision.

Overall Fact Extraction Performance Figure 4

shows the comparison between the baseline and the

fact extraction process of WebKnox for all concepts of

the test set. The evaluated fact extraction process used

33

Figure 3: Evaluation of the self supervised learning

loop for the extraction structure trust.

Equation 7 (with cross validation) and stopped after

172 iterations to weight the extraction structures and

apply cross validation for numeric facts. The measures

in the figure are pr for precision and re for recall. There

are two bars for each measure and concept, where the

left is the one for the baseline and the darker right

one is the measured value for WebKnox. In five of

the six concepts, WebKnox reaches a higher precision

and recall than the baseline. For the car and notebook

concept it does not perform considerably better than

the baseline. That is because the normalization step

sometimes fails to normalize the numbers correctly.

In the car and notebook domain most of the facts are

numeric facts and several times there is no unit given

with the fact. Overall, the system achieves precision

and recall over 70% compared with the baseline of just

approximately 52%.

5 Conclusion and Further Work
We showed that we can increase the fact extraction per-

formance by searching facts in different formats and

structures of HTML documents. Furthermore, we intro-

duced an algorithm that can learn a trust value for those

structures in a self supervised manner. We are able to

assign a trust value to the extracted facts based on a

source trust and the trust for the extraction structures.

Further work needs to be done especially:

1. Determining how well the trust value indicates for

the end user the reliability of the automatic extrac-

tion.

2. Finding further criteria to calculate the source trust

more accurately for the extraction process.

3. Investigating in further domain independent for-

mats and structures that are used to represent facts

on websites.

4. Automate identification and extraction of entities

(extending the work of Vercoustre et al. [5] on en-

tity ranking from Wikipedia).

Figure 4: Evaluation of the WebKnox system against

the baseline across six concepts.

References
[1] Michele Banko, Micheal J. Cafarella, Stephen Soderland,

Matt Broadhead and Oren Etzioni. Open Information

Extraction from the Web. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence,

pages 2670–2676, 2007.

[2] Chia-Hui Chang, Mohammed Kayed, Mohed R. Girgis

and Khaled F. Shaalan. A Survey of Web Information

Extraction Systems. IEEE Transactions on Knowledge
and Data Engineering, Volume 18, Number 10, pages

1411–1428, 2006.

[3] William W. Cohen, Matthew Hurst and Lee S. Jensen. A

flexible learning system for wrapping tables and lists in

HTML documents. In Proceedings of the 11th Interna-
tional Conference on World Wide Web, pages 232–241.

ACM, 2002.

[4] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley

Kok, Ana-Maria Popescu, Tal Shaked, Stephen Soder-

land, Daniel S. Weld and Alexander Yates. Web-scale

information extraction in knowitall: (preliminary results).

In WWW ’04: Proceedings of the 13th International
Conference on World Wide Web, pages 100–110. ACM,

2004.

[5] Anne-Marie Vercoustre, James A. Thom and Jovan Pe-

hcevski. Entity ranking in Wikipedia. In SAC ’08:
Proceedings of the 2008 ACM symposium on Applied
computing, pages 1101–1106. ACM, 2008.

[6] Alexander Yates. Information Extraction from the Web:
Techniques and Applications. Ph.D. thesis, University of

Washington, Computer Science and Engineering, 2007.

[7] Shubin Zhao and Jonathan Betz. Corroborate and Learn

Facts from the Web. In KDD ’07: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge
discovery and data mining, pages 995–1003. ACM, 2007.

34

Anonymous folksonomies for small enterprise webs: a case study

Tom Rowlands
CSIRO ICT Centre and ANU DCS

ACT 2601 Australia

tom.rowlands@ieee.org

David Hawking
Funnelback

ACT 2601 Australia

david.hawking@acm.org

Ramesh Sankaranarayana
Dept. of Computer Science

Australian National University
ACT 2601 Australia

ramesh@cs.anu.edu.au

Abstract Tags and emergent folksonomies are a poten-
tially rich new source of document annotations, offering
query independent and dependent evidence for exploita-
tion by information retrieval systems. Previous research
has shown that tags may facilitate improved web search
in an environment where each tagging action generates
a (user, tag, resource) triple.

For websites operated by a public institution, oper-
ational or privacy concerns may prevent the recording
of data capable of identifying individuals. This leads
to a simpler anonymous tagging system but is likely to
reduce user motivation for tagging, since the user cannot
access their own set of tags. It also means that votes
for tags are not counted, and a potentially useful joining
attribute is not available.

Using webpage, metadata, query, click, anchortext
and tag data provided by a public museum, we demon-
strate that, despite these limitations, tag data collected
by an anonymous tagging system has the potential to
improve retrieval effectiveness.

Keywords Information Storage and Retrieval

1 Introduction
‘Tagging’ a resource is the action of tying a typically

short, and often white-space free, string, the ‘tag’, to

a resource. The resource may be a web page, docu-

ment, picture, person, or a reference. Tags are used on

many social networking websites such as flickr.com,

delicious.com1 and citeulike.org and in some

blogs, allowing users to read blog posts of a particular

tag. There is no restriction on the text a tag may contain;

no controlled vocabulary or, necessarily, a particular

meaning attached to any particular tag.

1Formerly known as del.icio.us

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

t!

t"

t#

…

t�

Tags

r!

r"

r#

r�

Resources

u!

u"

u#

u�

Users

Figure 1: The relationship between users, the tags they use

and the resources that are tagged, expressed as a graph. It is

possible for the one resource to be tagged multiple times with

the same tag, but only by different users.

On services permitting multiple taggers, such as

delicious.com, users can typically see the tags others

have applied, and over time a ‘taxonomy of the folk’

develops. Importantly, users can re-apply the same tag

to objects already exhibiting a tag, thereby reinforcing

the tag.

Bao et al. [1] have shown that this type of tagging can

be used to improve retrieval effectiveness in web search.

It is a more open question as to whether folksonomy

tagging can, in practice, deliver retrieval benefits at an

enterprise or website level. Please note that, although

most folksonomy tagging systems are web-based, tags

could potentially be applied to non-web data.

1.1 Anonymous tagging
Anonymous tagging systems are different to those de-

scribed above in that user information such as user-id,

IP address or geo-location is not recorded. All tags are

public. Consequently, one of the potential incentives

for tagging, organisation and ease of reference for the

individual [6], is removed. While an underlying database

perhaps permits a resource to be tagged more than once

with the same tag, this doesn’t tend to happen in practice.

35

t!

t"

t#

…

t�

Tags

r!

r"

r#

…

r�

Resources

Figure 2: The relationship in an anonymous tagging environ-

ment is such that tags are applied to resources, independent of

the users. This arrives at a simpler graph than in Figure 1, in

which each object can only be tagged with each tag once.

Anonymous tagging offers some advantages to an

organisation operating a website. There is no need to

track individual users or securely store their associated

logins and passwords. There is less chance that a user

will feel ownership over their data, thereby reducing the

risk the service provider will need to disseminate data

should the service be ceased. Notwithstanding the loss

of incentive mentioned in the abstract, casual visitors to

the site may be more likely to tag resources, since they

do not have to log in to do so.

To the best of our knowledge, anonymous tagging

systems have not previously been studied from an infor-

mation retrieval perspective.

1.2 Aims and scope of the present work
We present a case study of a data collection comprising

document content, metadata, anchortext, user queries

and clicks, as well as folksonomy tags from the anony-

mous tagging system of a public institutional website.

We characterise the collection and compare the dis-

tribution of number of items tagged per unique tag with

that observed in a user-based tagging system.

Our principal aim is to test the hypothesis that tags

collected in an anonymous tagging environment are

capable of boosting retrieval effectiveness within an

institutional website.

Accordingly, we investigate the following questions:

• What proportion of resources are tagged?

• How quickly is the untagged proportion of the

collection likely to diminish at currently observed

tagging rates?

• To what extent do queries match tags?

• Do tags permit retrieval of documents not retrieved

on the basis of text created by author and/or pub-

lisher, i.e. content and official metadata.

2 Related work
2.1 Annotations
Significant retrieval effectiveness and efficiency gains

have been demonstrated by the use of annotation data.

Craswell et al. [3] demonstrate superior site finding

performance with an anchortext surrogate index ‘an

order of magnitude’ smaller than content. Eiron et al. [5]

study the utility of anchortext for information retrieval

based on the idea that queries, anchortext and titles are

created by a similar thought process.

Xue et al. [12] use surrogates and compensate for

a relatively small quantity of click data by using co-

visitation.

Dmitriev et al. [4] invite users to add ‘explicit’ anno-

tations to an intranet. They argue that such annotations

are expensive to produce as users have to be asked to

produce them and often do not find the time. They

also examine ‘implicit’ annotations, such as queries

associated with documents through clicks.

2.2 Tags and folksonomies
Mathes [10] proposes some attractions of user generated

textual metadata, arguing the relative simplicity of tag-

ging systems, their ‘low cognitive cost’, rapid feedback

and development of communities, all as attractions to

potential taggers. Golder and Huberman [6] discuss how

folksonomies are distinct from taxonomies in their being

non-hierarchical and inclusive. They analyse data from

delicious.com and demonstrate some interesting ef-

fects by comparing users. They also report that tags are

not always used as a description of the document content

and so document and tag vocabularies can be expected

to be different.

Bao et al. [1] define SocialSimRank, estimating the

similarity between queries and web pages based on the

tag graph. They also define SocialPageRank, estimating

the query independent value of a web page based on the

tag graph. They use both in a whole of Web search task,

combining with other forms of evidence using a support

vector machine, and show good results.

The challenge of tag segmentation due to lack of

explicit boundaries (e.g. ‘informationretrieval’) in tags,

discussed in [1], is not a problem in our case.

Halpin et al. [7] suggest a generative model for

tagging that arrives at a power law (see [2]) based on

preferential attachment. The central idea is that users are

more likely to tag a resource with a tag that has already

been used for that resource. They demonstrate tags on

delicious.com following a power law pattern.

3 Data
The primary data used in this paper has been gathered

from an online museum catalogue. Pictures and descrip-

tions of the museum’s artifacts are published, along with

various metadata, as HTML pages and are accessible via

a standard web interface. We collected the document

data using a commercial web crawler. The museum

provided tag and click data as a database dump. The site

is particularly interesting because it offers non-trivial

quantities of content, anchortext, click associated query

and tag evidence.

36

The tagging data covers only those items within the

museum’s ‘online collection’, which comprises 132327

of the 135216 documents on the museum’s website. We

consider only the online collection. The majority of

documents describe a single museum exhibit and include

Title, Description (usually identical to title), Keywords,

and content.

The click data covers the period 14 July 2008 to

14 August 2008. The content of sixty documents for

which we have tag data were not yet downloaded by the

time our crawl was terminated. The crawl was tempered

to reduce load on the museum’s servers. It started on

20 August 2008 and lasted just under five days.

There are 7221 distinct tags with 11 509 applications

of those tags. Each application included the date on

which the tag was applied to the document. There were

no cases of the same tag being applied more than once

to the same document.

A conventional query log was not available. We have

no information about queries which were submitted but

which did not lead to any click. Instead, we have a click

log which shows 10 747 distinct user-composed queries2

associated with a total of 364 310 clicks. It is known

that the site search facility makes use of the tags.

The average length of the tags, queries and anchort-

ext is 1.5, 1.4 and 8.1 words respectively. The distribu-

tion of lengths is shown in Figure 6. Anchortext tended

to repeat the title, often truncated, of the target page.

For the study, all tags and queries have been

case folded and leading and trailing whitespace has

been removed. In our data, tags are associated with

document identifiers rather than URIs. Sometimes

multiple URIs share the same docid e.g. http:
//museum.com/getdoc?docid=1&image=1 and

http://museum.com/getdoc?docid=1&image=2.

In such cases, the tag or click has been considered to

‘apply’ to both URIs.

4 Experiments
4.1 Experiment 1: Characteristics of

anonymous tags
In this section, we investigate the frequency of appli-

cations of tags to particular resources. It has been

previously established that, in non-anonymous tagging

systems, sufficiently popular tagged resources and entire

folksonomies from the one system yield power law-

like distributions. An example of such a distribution

is shown in Figure 4.3 The anonymous tagging system

that is the focus of this paper is shown in Figure 3. This

shows graphically that, like queries and non-anonymous

tagging systems, anonymous tagging systems yield a

few tags occurring a relatively large number of times,

with many tags occurring very rarely.

2We eliminated a large number of records in which the query was

generated by a user clicking on a navigational link within the site.
3This example data is taken from the citeulike.org facility.

Figure 3: A log-log graph of the number of times each tag

has been used across the corpus, ordered by that number. For

example, the most frequent tag, ranked 1, has been applied to

76 objects. As the tagging system is anonymous, each tag can

only be applied to each object once. The distribution is similar

to that in the more traditional case, shown in Figure 4, despite

the lack of reinforcement.

Figure 4: A log-log graph, similar to Figure 3, but from a

non-anonymous tagging system where tags can be reinforced

by other users. This data is from citeulike.org.

37

Figure 5: The number of tagged objects over time. The sudden

jump in the number of tags at the far right reflects an import of

tags made available to users through the Flickr site. Flickr is

very popular. Note that this is the number of tagged objects,

not the number of tags; if an object is tagged multiple times it

is only counted once.

4.2 Experiment 2: How prevalent are
tags?

We counted the number of documents (museum objects)

to which tags had been applied and observed how that

increased with time.

4.2.1 Results

The number of tagged objects plotted against time is

shown in Figure 5. The number of tagged objects is

far fewer than the number of separate articles in the

museum, and reflects only around five per cent of the

collection. The overall average rate of tagging over two

years is three and a half thousand objects tagged per

year.

It is not clear why there is a ‘knee’ in the plot around

the beginning of 2008. The museum suggests this may

be due to a declining number of people interested in

tagging. Note the sudden jump in the second half of

2008 due to the import of tags from Flickr.

4.2.2 Discussion

If, optimistically, the average rate of tagging were to

be maintained, it would be approximately another thirty

five years before all the items in the present collection

received at least one tag.

A substantial increase in the number of tagged ob-

jects is provided by making the objects available on the

external Flickr site.4 All of the tags added by users of

Flickr were to objects that were previously untagged,

and in some cases there were multiple tags added to the

same object.

4See http://www.flickr.com/commons/.

4.3 Experiment 3: Do tags match
queries?

To assist in retrieval, tags must match queries actually re-

ceived by the information retrieval system. We consider

three different matching models:

• Exact match: the query and tag strings are identical.

• AND match: all the words in the query are present

in the tag.

• OR match: at least one query word is present in the

tag.

Note that each of these models is applied to tags

individually, not to the collection of tags applied to an

object. Obviously, the second and third models are the

same when the query consists of only one word.

For contrast, a similar calculation is conducted for

anchortext. ‘Canned’ or automatically produced links

containing query text or tags have been filtered out to

avoid inflating the results in this case. An example of

such links is the automatically generated list of ‘recently

applied tags’.

4.3.1 Results

Table 1 shows the percentage of query instances that

might be answerable by tags and anchortext using three

different matching schemes.

Overall, 88% of the query instances share at least

one term with a tag and, as a consequence, might be at

least partially answerable by that tag. This percentage

drops to 69% for AND match and 61% for Exact match.

Table 2 looks at queries and annotations the other

way around—what percentage of annotations are useful

in answering at least one query? The percentages are

reasonably high for tags. Overall, 81% of tags are

potentially useful (OR match) in answering at least one

query and 57% of tags exactly match a query.

A high proportion (88%) of anchortext annotations

achieve an AND match with at least one query, but there

are no exact matches.

4.3.2 Discussion

No anchortext annotations exactly match any queries,

even though there is a very high degree of AND match.

The lengths of strings used as anchortext (usually the

title or an abridged title of the target document) are quite

different to those of tags and queries; this can be seen

in Figure 6. An exact match function would not be

appropriate for use with anchortext on this site.

4.4 Experiment 4: Do tags contribute use-
ful additional terms?

Here we are interested in queries answerable by tags but

not by document content, metadata or anchortext.

38

Table 1: Percentage of the query workload, of various lengths, matching at least one annotation. For example, twenty seven per

cent of query instances of length two AND match a tag.

Match type Exact AND OR

Query length 1 2 3 ≥ 4 all 1 2 3 ≥ 4 all 1 2 3 ≥ 4 all

Tags 75 21 24 2 61 85 27 27 3 69 85 96 99 100 88

Anchortext 0 0 0 0 0 97 93 90 87 96 97 100 100 100 98

Table 2: Percentage of annotations, of various lengths, matching at least one query instance. For example, twenty three per cent

of tags of length three match a query exactly.

Match type Exact AND OR

Annotation length 1 2 3 ≥ 4 all 1 2 3 ≥ 4 all 1 2 3 ≥ 4 all

Tags 68 39 23 11 57 68 81 86 93 73 75 94 98 99 81

Anchortext 0 0 0 0 0 68 66 98 92 88 72 83 100 99 96

1 2 3 >=4

Terms

P
e

rc
e

n
ta

g
e

 o
f

a
n

n
o

ta
ti
o

n
 t

y
p

e

0
2
0

4
0

6
0

8
0 Anchortext

Queries

Tags

Figure 6: The percentages of different lengths of annotation

data. There is a large proportion of anchortext that is four or

more terms long, while tags and query instances both tend to

be short.

4.4.1 Results

For 48% of distinct queries, a tag matching the query

(at least one intersecting term) reveals at least one new

document with which the query did not share a term.

This represents 54% of the workload. Document content

included all text and metadata.

The percentages of query instances matching tags

but not the associated document is shown in Table 3.

5 Discussion
We have seen that in this instance, even after two years

offering a tagging interface a relatively small number of

objects have been tagged. This is a disappointment to

the museum which they partially addressed by posting

items on Flickr and collecting tags.

Many of the reasons for tagging outlined by [9] and

[6] do not apply in the anonymous tagging environment.

This may partly explain why objects displayed in Flickr

are tagged at a much higher rate than on the museum

site.

We note that it may be possible to derive further tags

implicitly from website referrer logs. Another possibility

might to be to provide tagging incentive by instituting a

tagging game (see e.g. [11]).

Not every object must be tagged for the tags to

contribute useful evidence. For example, an anonymous

tagging system on an intranet may assist staff in finding

key pages more quickly even with only a small subset

of important pages tagged.

Fifteen per cent fewer queries were potentially an-

swerable by tags than by anchortext, but ‘potentially

answerable’ is an extremely optimistic metric. Examin-

ing from the ‘other direction’, however, it is most often

very long anchortext that matches queries.

The rough power law distribution shown by [7] is

seen in the folksonomy distribution shown in Figure 3.

Halpin et al. suggested in their generative model of

tagging systems that the likelihood of a tag being applied

to an object was influenced by the tags already applied

to that object. In the case of anonymous tagging sys-

tems, the distribution of tag application is 1—a straight

line—and yet the distribution across the corpus is still a,

roughly, power law distribution with a steep decline for

the most frequent tags.

Any system permitting users on the Web at large to

add or remove information at will opens itself to the

issue of spam [8]. The tags on the site investigated here

seemed to be relatively free of spam. By restricting

the resources to those available on the site it is made

less attractive to spammers attempting to manipulate

rankings in commercial search engines. Private systems

allowing links beyond the site itself are also possibly

immune for the same reason; their impact on commercial

search will be small or nil.

39

Table 3: Percentage of query workload where a query matches a tag but does not match the content of a tagged document

(including Title, Keyword and Description metadata) or anchortext pointing to the tagged document. For example, 49% of

queries containing two terms matched a tag that was applied to at least one document containing neither of the query’s terms.

Match type Exact AND OR

Query length 1 2 3 ≥ 4 all 1 2 3 ≥ 4 all 1 2 3 ≥ 4 all

Content 28 1 0 0 21 57 1 0 0 42 57 49 37 20 54

Anchortext 36 1 0 0 27 77 2 0 0 58 79 94 97 99 83

6 Conclusions
Anonymous tagging systems, like that deployed at the

museum which is the object of the present study, do

not provide the same incentive to tag as do user-centric

tagging systems on the Web. When objects from the

museum are displayed in Flickr, they are tagged at

a much higher rate than on the museum’s own site.

Anonymous tags provide only a binary signal as to the

importance of a resource with respect to a tag. There is

no voting aspect; either a tag is applied or it is not.

Despite these differences, anonymous tag data from

the museum shows a similar distribution of tags to that

described by [7].

Although the sparsity of tag data and its slow rate

of accumulation mean that a retrieval system for the

museum could not be based on tags alone, we found

that a relatively high proportion (54%, assuming OR-

match) of the query load for which answers could be

identified using the tags that were not identified by text

or metadata generated by the author or publisher. This

suggests that future research on combining anonymous

tags with other evidence in a retrieval system would be

worthwhile.

Acknowledgements The authors would like to thank

the museum who kindly granted access to the data,

without which the experiments could not have been run.

References
[1] Shenghua Bao, Gui-Rong Xue, Xiaoyuan Wu,

Yong Yu, Ben Fei and Zhong Su. Optimizing

web search using social annotations. In Carey L.

Williamson, Mary Ellen Zurko, Peter F. Patel-

Schneider and Prashant J. Shenoy (editors), WWW,

pages 501–510. ACM, 2007.

[2] A. Clauset, C.R. Shalizi and MEJ Newman. Power-

law distributions in empirical data. Arxiv preprint
arXiv:0706.1062, 2007.

[3] Nick Craswell, David Hawking and Stephen

Robertson. Effective site finding using link anchor

information. In Proceedings of ACM SIGIR 2001,

pages 250–257, 2001.

[4] Pavel A. Dmitriev, Nadav Eiron, Marcus Fontoura

and Eugene Shekita. Using annotations in enter-

prise search. In WWW ’06: Proceedings of the

15th international conference on World Wide Web,

pages 811–817, New York, NY, USA, 2006. ACM

Press.

[5] Nadav Eiron and Kevin S. McCurley. Analysis

of anchor text for web search. In SIGIR ’03:
Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 459–460, New York,

NY, USA, 2003. ACM.

[6] Scott A. Golder and Bernardo A. Huberman.

Usage patterns of collaborative tagging systems. J.
Inf. Sci., Volume 32, Number 2, pages 198–208,

2006.

[7] Harry Halpin, Valentin Robu and Hana Shepherd.

The complex dynamics of collaborative tagging. In

WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 211–220,

New York, NY, USA, 2007. ACM.

[8] Monika R. Henzinger, Rajeev Motwani and Craig

Silverstein. Challenges in web search engines.

SIGIR Forum, Volume 36, Number 2, pages 11–

22, 2002.

[9] Cameron Marlow, Mor Naaman, Danah Boyd

and Marc Davis. Ht06, tagging paper, taxonomy,

flickr, academic article, to read. In HYPERTEXT
’06: Proceedings of the seventeenth conference
on Hypertext and hypermedia, pages 31–40, New

York, NY, USA, 2006. ACM.

[10] Adam Mathes. Folksonomies-Cooperative Clas-

sification and Communication Through Shared

Metadata, December 2004.

[11] L. von Ahn and L. Dabbish. Labeling images with

a computer game. In Proceedings of the SIGCHI
conference on Human factors in computing sys-
tems, pages 319–326. ACM Press New York, NY,

USA, 2004.

[12] Gui-Rong Xue, Hua-Jun Zeng, Zheng Chen, Yong

Yu, Wei-Ying Ma, WenSi Xi and WeiGuo Fan.

Optimizing web search using web click-through

data. In Proc. ACM CIKM ’04, pages 118–126,

2004.

40

The Effect of Using Pitch and Duration for Symbolic Music Retrieval

Iman S. H. Suyoto and Alexandra L. Uitdenbogerd
School of Computer Science and Information Technology

RMIT University
Vic. 3001 Australia

{Iman.Suyoto,Alexandra.Uitdenbogerd}@rmit.edu.au

Abstract Quite reasonable retrieval effectiveness is
achieved for retrieving polyphonic (multiple notes at
once) music that is symbolically encoded via melody
queries, using relatively simple pattern matching tech-
niques based on pitch sequences. Earlier work showed
that adding duration information was not particularly
helpful for improving retrieval effectiveness. In this pa-
per we demonstrate that defining the duration infor-
mation as the time interval between consecutive notes
does lead to more effective retrieval when combined
with pitch-based pattern matching in our collection of
over 14 000 MIDI files.

Keywords Music information retrieval, Information
retrieval, Multimedia resource discovery, Pattern
matching

1 Introduction
The field of music information retrieval has as its aim
the development of technology to enable users to find
music that they are searching for. There are many ways
that users may wish to search for music, such as locat-
ing information about a song for which a small frag-
ment is remembered, finding music that is of a similar
style to an example, or simply searching for music that
the user might like. The reason for searching could be
simply to satisfy the user’s curiosity, check for copy-
right infringement, or to purchase new music.
One of the main problems studied in the field of

music information retrieval is that of retrieving music
given a query that is a melody fragment, such as a few
notes of the sung component of a verse of a song. The
problem’s complexity varies depending on the format
of the query and the music collection, with the sim-
plest being search of a symbolically encoded collec-
tion of melodies using a symbolically encoded melody.
In this paper, we use symbolic melody queries and a
polyphonic (multiple notes at once) collection of music.
Most of our early work [29, 34, 35] was restricted to
search using a representation of both queries and music
from the collection as sequences of pitches. Rhythm
information was ignored. This approach was shown

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

to be competitive with more complex techniques in re-
cent evaluation exchanges [24, 31, 32] where the col-
lection was symbolically encoded. However, improve-
ment may be possible with the introduction of rhythm
information, potentially allowing matching techniques
to yield greater effectiveness for sung queries that are
likely to be less precise than those issued via a musical
keyboard or text-based encoding. In our experiments
we explore two different methods of encoding rhythm:
encoding the duration of each note in a melody and
inter-onset intervals (IOI) — the time interval between
successive notes. We found that improvement in re-
trieval effectiveness is possible using an IOI represen-
tation of rhythm.

2 Related Work
Much of previous research has shown that the pitch
feature is sufficient to support effective content-based
retrieval of music. The usage of both pitch and
rhythm has also been examined in past work by, for
example, McNab et al. [15], Chen and Chen [1],
Lemström et al. [12], Dannenberg et al. [2], Ferraro
and Hanna [5], Hanna et al. [8], Typke et al. [27],
and Lemström et al. [13]. Other than in our previous
work [23], the relative value of these features for
matching on large polyphonic collections has not been
measured. In addition, the benefit of string-matching
approaches in this scenario have not been thoroughly
investigated yet. We discuss each of these papers
below.
McNab et al. [15] investigated what combination of

pitch and duration features has the best discriminatory
power to distinguish one musical piece from others.
Their collection consisted of 9600 folksong melodies.
They examined both exact matching and approximate
matching (using dynamic programming as given in
Mongeau and Sankoff [18]). To represent the pitch
component of notes, they used pitch interval, which is
the difference in pitch between two adjacent notes, and
pitch contour, which is the movement direction from
a previous note to a current note, described further
in Uitdenbogerd and Yap [33]. They found that for
highly effective exact matching with rhythm, five notes
are sufficient. Without rhythm, about seven notes are

41

required. For approximate matching (with rhythm), the
number of required notes increases to twelve.
A technique for retrieval by rhythmwas proposed in

Chen and Chen [1]. Every piece was represented by a
rhythm string, representing solely the rhythmic patterns
in that piece. In particular, a piece was divided into
measures, and the note durations in every measure in a
piece were captured as a unit. Pitches were ignored.
Every measure was stored as a node in a tree-based
index structure. Their paper emphasises the efficiency
of their approach, but fails to present how effective it is.
Their test collection only consisted of 102 folk songs
(the format of which is unspecified). The relatively
small size of the collection and the lack of effectiveness
benchmark make the merit of this approach question-
able.
Lemström et al. [12] introduced a technique that

represents a note as a combination of its pitch interval
(with respect to the note preceeding itself) and dura-
tion of a monophonic music sequence, called relative
interval slope. A sequence consists of n notes, each
of which is a pair of its pitch and its duration. The
interval slope sequence consists of n symbols, each is
the signed difference between the pitch of the current
note and that of the previous note, over the duration of
the previous note. The first symbol is a special case; it
is the pitch of the first note over the the duration of the
last note. If every symbol in the interval slope sequence
is denoted by ai;1≤ i≤ n, the relative interval sequence
consists of n symbols, each is ai for 1≤ i≤ 2 or ai

ai−1
for

i> 2. They conducted their experiment on a collection
of 6070 monophonic MIDI tracks. Only exact matches
were considered. It is not clear how many queries were
used. It is mentioned that the experiment run consisted
of 18000 searches, but the number of unique queries is
not mentioned. For queries with pattern length of 13 up
to 20, no false positive was generated.
In Dannenberg et al. [2], rhythmic information was

used for query-by-humming retrieval, with an answer
collection of MIDI files. Three melody encoding
approaches were evaluated. In the first approach, a
note is represented using its pitch interval and inter-
onset interval ratio. An inter-onset interval ratio is
encoded as a quantised value of five possible values as
devised in Pardo and Birmingham [19], which a pitch
interval is encoded as a quantised value of 25 possible
values. These make this encoding tempo-invariant
and transposition-invariant. Edit distance was used
as the similarity measure. In the second approach,
based on Mazzoni and Dannenberg [14], a piece was
divided into frames of equal time length, from each
of which the fundamental frequency is estimated. In
this case, note boundaries were ignored. The obtained
melody was then transposed 24 times, half a semitone
each time. Dynamic time warping was used for
matching. In the third approach, based on Meek and
Birmingham [16], a note was represented using its
pitch class and inter-onset interval, quantised based on

a log scale. Matching was performed using a hidden
Markov model. Two experiments were conducted.
The first experiment involved 160 queries (80 for
training and 80 for testing) and a collection of 10 000
synthetically generated pieces with a mean length of
40 notes as noise and 10 folk songs as targets. How
the 10 000 pieces were generated is not described. As
the result of this experiment, the third approach caused
73.75% of the test queries to obtain the target answer in
the first rank position, but the results for the other two
approaches were not reported. The second experiment
used two query sets. The first query set consists of
131 queries, whereas the second one consists of 165
queries. The first query set was run against a collection
of 258 Beatles pieces, and the second query set was run
against a collection of 868 popular songs. The third
approach was superior for the first query set, yielding
a mean reciprocal rank value of 27.0% (compared
to 21.0% for the second approach and 13.4% for the
first approach). For the second query set, the second
approach was superior, yielding a mean reciprocal
rank value of 32.9% (compared to 31.0% for the third
approach and 28.2% for the first approach).
Ferraro and Hanna [5] and Hanna et al. [8] explored

the use of duration information for monophonic mu-
sic matching. They examined using duration differ-
ences between two notes. It is not clearly specified
which two notes are meant. Combination of similarity
evidence is used to combine the pitch similarity score
(spitch) with the duration similarity score (sduration) us-
ing the formula given in Mongeau and Sankoff [18]:
stotal = spitch+ ksduration where k is a weighting param-
eter. They claim that at k = 0.20, using duration infor-
mation improves retrieval effectiveness over the use of
pitch only.1 The statistical significance of their result is
not reported. Ferraro and Hanna [5] and Hanna et al. [8]
claim to obtain significantly different results from using
duration and disagree with our conclusion [23] that says
otherwise. However, they were using monophonic mu-
sic, whereas our experiments used polyphonic music.
On the improvement significance aspect, we admitted
that there was a slight improvement when duration in-
formation was used, albeit not statistically significant.
On the other hand, they have shown no proof of statis-
tical significance of their claim. Moreover, they did not
contrast the input sizes used in both papers. Their work
used the testbed of MIREX 2005, which had a collec-
tion of 558 MIDI pieces with only 11 queries. This
is clearly much smaller than ours (more than 10,000
pieces in the collection and 24 queries) and an indi-
cation that the complexity of the problem they were
discussing was much smaller.
All work mentioned above involved the use of du-

ration on monophonic collections. There has been re-
search that attempts to use duration-based information
on polyphonic music, such as Typke et al. [27] and

1The k value is reported in Hanna et al. [8] but not in Ferraro and
Hanna [5].

42

Lemström et al. [13]. Typke et al. [27] described several
retrieval tasks in MIREX 2006.2 Two of them involved
polyphonic music:

1. Symbolic melodic similarity using 1000
polyphonic karaoke files with five queries
(referred as the karaoke task herethereafter).

2. Symbolic melodic similarity using 10000 MIDI
files downloaded from the Web, most of which are
polyphonic, with six queries (referred as the mixed
polyphonic task herethereafter).

In their approach, a melody extraction routine was
applied to obtain monophonic representations of
the polyphonic pieces. A skyline algorithm3 was
used. Which specific skyline algorithm was not
specified. These monophonic representations are
divided into overlapping segments with different
lengths. They used lengths of 5 to 16, except for the
second task, where they used 5 to 7. The segments
were then indexed using vantage indexing [36] using
the Proportional Transportation Distance [28] as
the distance measure. A note was represented as a
two-dimensional point [28], with pitch and onset time
as the dimensions. The duration of the note was used as
the weight of the point. For the two tasks, their method
achieved a MAP value of 0.875 and 0.903 respectively.
In Lemström et al. [13], a geometric sweepline al-

gorithm called P3 was used. Every piece was repre-
sented by its piano roll [20] representation. The fea-
tures used were pitch and the start and end times (which
can be used to derive durations) of notes. To deter-
mine the similarity between a query and an answer, the
maximum overlap was determined over keys to ensure
transposition invariance. Although this caters for dif-
ference in keys, it will likely fail if the tempi of the
query and the answer are different. To address this, they
proposed SCALEDP3, which extends P3 by scaling the
query tempo by a scaling factor. However, it performed
poorly on the MIREX 2006 symbolic polyphonic re-
trieval tasks.

3 Feature Extraction
Our approach assumes that we are working with
polyphonic symbolic music. The string representations
mentioned in this paper imply that a sequence is
one-dimensional, since we cannot have any overlap
in a string. However, in polyphonic music, notes can
overlap, and as such, it is two-dimensional. Previously,
Uitdenbogerd and Zobel [29] showed that reducing
the two-dimensional space into one dimension by
extracting a representative note for a particular time
point can support effective retrieval. The output from
feeding polyphonic music into this process is therefore

2See http://www.music-ir.org/mirex2006.
3A skyline algorithm takes from a set of overlapping items the

one with the extreme value of a certain feature of set of features. The
ALL-MONO algorithm (Algorithm 1) is an example skyline algorithm.

Algorithm 1 ALL-MONO melody extraction algorithm.
A note is expressed as a tuple n = 〈p,d,o〉 where p is
the pitch, d is the duration, and o is the onset time. The
base index is 0. P is the sequence of the representative
bass part. “πx” is the relational operator for projecting
the x attribute.
Require: array of notes N
Sort N by ascending onset time as the first sort key
and descending pitch as the second sort key.
{Start taking the highest note at any onset time.}
for i= 0 . . . |N|−2 do
if (πoni �= πoni+1) then
Append πpni to P.

end if
if (πoni+ πdni > πoni+1) then
d′ ← πoni+1−πoni
ni←

〈
πpni,d′,πoni

〉
end if

end for
Append πpn|N|−1 to P.
{End.}
return P

a monophonic melody, representing the polyphonic
music. The ALL-MONO algorithm has been shown
to be a highly effective melody extraction algorithm.
If there is a note m of length lm sounding at time tm
and another note n sounding at tn so that lm+ tm > tn,
then lm will become l′m← tn− tm. In other words, note
overlaps are removed. The ALL-MONO algorithm is
outlined in Algorithm 1.

4 Matching Technique
To support approximate matching, we convert the
melody into standardisations. The pitch standardisation
used for the experiments described in this paper is the
directed modulo-12 approach [23, 26, 30], described
in Section 4.1. As our experiments also make use of
the duration feature in notes, we also need to encode
the durations into a searchable representation. For this
purpose, we use the extended contour standardisation,
to be described in Section 4.2.

4.1 Pitch Directed Modulo-12 Standardi-
sation

In the directed modulo-12 standardisation, a note is rep-
resented as a value r which is the interval between a
note and its previous note scaled to a maximum of one
octave [21, 30]:

r ≡ d(1+((I−1) mod 12)) (1)

where I is the interval between a note and its previous
note (absolute value) and d is 1 if the previous note
is lower than the current note, −1 if higher, and 0 if
otherwise. For example, the melody shown in Fig. 1 is
encoded as “7 4 1 -5 -5 2 3 -2 -1 -2”.4

4A figure is treated as a symbol. Hence, it is a 10-symbol string.

43

Figure 1: “Melbourne Still Shines” by ade ishs.

Figure 2: Duration extended contour quantisation. K =
λC/λP where λC and λP are respectively the current and
previous note durations. The current note is represented
as “R” if | log2K| < 1; “l” if 1 ≤ log2K < 2; “L”
if log2K ≥ 2; “s” if −2 < log2K ≤ −1; and “S” if
log2K ≤ 2.

4.2 Duration Extended Contour Stan-
dardisation

The extended contour standardisation is partly inspired
by a pitch standardisation called the pitch extended con-
tour standardisation [30], which encodes a note as a
movement direction of the previous note pitch to its
pitch. There are five distinct symbols, each representing
a set of pitch intervals: “S” if the current note is the
same pitch as the previous note, “u” if the current note
pitch is a little higher than the previous note pitch, “U” if
the current note pitch is much higher than the previous
note pitch, “d” if the current note pitch is a little lower
than the previous note pitch, and “D” if the current note
pitch is much lower than the previous note pitch.
Just as in pitch contour-based standardisations,

the extended contour standardisations also employ
five distinct symbols to represent a note. In the case
of duration, we use “S”, “s”, “R”, “l”, and “L” for
“much shorter”, “a little shorter”, “same”, “a little
longer”, and “much longer” respectively. Interestingly,
Moles [17] describes an approach for encoding
duration quantisation. The quantisation we use in our
experiments is based on the encoding given in that
literature. Let λC be the current note, λP be the previous
one, and K = λC/λP. A note is represented based on
the ranges of log2K as illustrated in Figure 2. For
example, the melody shown in Figure 1 is represented
as “L S R L S R l R R R”.

4.3 Alignment
Kageyama et al. [11] suggested the use of note dura-
tions as penalty scores for insertion and deletion oper-
ations in calculating weighted edit distances. How the
scores are calculated is not formally defined however.
In this work, we also use a dynamic programming tech-
nique, that is, the local alignment algorithm [7], It is
useful to find the substring with the highest similarity
within a string. Query tunes are usually represented by
short strings while answer tunes are usually represented
by long strings, so the alignment is more suitable than
global alignment [29].
For a query-answer pair, two scores are produced:

one pitch similarity score, and one duration similarity

score. These scores are to be fused using a similarity
evidence combination technique described in the fol-
lowing section.

4.4 Combining Pitch and Duration Simi-
larity Scores

We experiment with a vector model to combine simi-
larity evidence from both pitch and duration matching.
The pitches and durations are represented using the re-
spective standardisations. For the purpose of fusing the
pitch and duration similarity scores, they are modelled
as vectors perpendicular to each other, making the re-
sultant similarity vector become the overall similarity.
The following formula is based on one in our previous
work [22], where we represent pitch and duration as
perpendicular unit vectors. To allow better fine-tuning,
we now also assign weights for both pitch and duration
components:

�Σ≡ wπ ςπ π̂ +wδ ςδ δ̂ (2)

where�Σ is the resultant similarity vector, ςπ is the pitch
similarity, ςδ is the duration similarity, wπ and wδ are
both weight constants, and π̂ and δ̂ are respectively
pitch and duration unit vectors. Ranking is then based
on the magnitude of the resultant similarity vector,
|�Σ|=

√
w2π ς2π +w2δ ς2δ .

5 Experimental Setup
As the aim of our experiment is to identify whether
note duration information is useful for melody retrieval,
we use a collection of polyphonic MIDI files and a set
of queries manually constructed by human subjects.
The collection contains 14 193 MIDI files, which form
a superset of the collection used in experiments by
Uitdenbogerd and Zobel [29, 34] and Uitdenbogerd
et al. [35]. A total of 24 queries were constructed by a
musician after listening to a set of polyphonic pieces.
The relevance judgement set was generated by human
users. They were presented with top answers from
several matching techniques and asked to give a binary
relevance judgement. More detail can be found in
Uitdenbogerd et al. [35].
As the baseline of our experiment, for pitch

matching, we used M(x,x) = 1 for a match,
M(x,y)|x�=y = −1 for a mismatch, and I = −2
for an insertion/deletion (see Section 4.3) as used
elsewhere [23, 29, 34]. For duration matching,
we used 21 scoring matrices as in Suyoto and
Uitdenbogerd [23]. The scoring matrices were
obtained by varying the variables a,b,c, . . . , i shown
in Figure 3, as detailed in Table 1. The matrix
means if there is a match “S”-“S”, M(“S”,“S”) = c;
a mismatch “S”-“s”, M(“S”,“s”) = d; etc. At any
time, a ≥ b ≥ c ≥ d ≥ e ≥ f ≥ g ≥ h ≥ i. The values
of these variables correspond to the rewards/penalties
based on the likelihood that there is an actual match
when the symbols do not actually match. In other

44

S s R l L
S c d f h i
s d b e g h
R f e a e f
l i g e b d
L h i f d c

Figure 3: Scoring matrix for duration extended contour
standardisation. “S”, “s”, “R”, “l”, and “L” respec-
tively indicate a “much shorter”, an “a little shorter”,
a “same”, an “a little longer”, and a “much longer”.
SS a b c d e f g h i
1 1 1 1 1 −1 −1 −1 −1 −1
2 2 1 1 1 −1 −1 −1 −1 −1
3 3 1 1 1 −1 −1 −1 −1 −1
4 3 2 1 1 −1 −1 −1 −1 −1
5 3 3 1 1 −1 −1 −1 −1 −1
6 3 3 2 1 −1 −1 −1 −1 −1
7 3 3 3 1 −1 −1 −1 −1 −1
8 3 3 3 3 −1 −1 −1 −1 −1
9 3 3 3 2 −1 −1 −1 −1 −1
10 3 3 3 1 −1 −1 −1 −1 −1
11 3 3 3 0 −1 −1 −1 −1 −1
12 3 3 3 −1 −1 −1 −1 −1 −1
13 3 2 1 0 −2 −3 −3 −3 −3
14 3 2 1 0 −3 −3 −3 −3 −3
15 3 2 1 0 −1 −2 −3 −3 −3
17 3 2 1 0 −1 −1 −3 −3 −3
17 3 2 1 0 −1 −1 −2 −3 −3
18 3 2 1 0 −1 −1 −1 −3 −3
19 3 2 1 0 −1 −1 −1 −2 −3
20 3 2 1 0 −1 −1 −1 −1 −3
21 3 2 1 0 −1 −1 −1 −1 −2
22 3 2 1 0 −1 −1 −1 −1 −1

Table 1: Scoring schemes (SS) for duration extended
contour standardisation. For all scoring schemes, a ≥
b≥ c≥ d ≥ e≥ f ≥ g≥ h≥ i.

words, if a symbol is replaced by a substitute, the
matrix values represent how much it will change the
rhythmic pattern of the melody. If an “R” matches an
“R” (thus the score a is rewarded), it is very likely that
the two notes represented by the symbols have the
same relative duration or inter-onset interval. By an
extreme contrast, the likelihood that two notes, each
represented by “S” and “L” (thus the score i is given),
have the same relative duration or inter-onset interval
is small.

6 Results
In our experiment, queries were matched against all
tunes in our collection 23 times, once for pitch match-
ing using the directed modulo-12 standardisation and
22 times for duration matching using the 22 scoring
schemes.
To combine pitch and duration similarities using

Equation 2, we used ten different wπ/wδ values: ∞ and
0,1,2, . . . ,9. The first one is the baseline performance,
that is, duration information is ignored (wδ = 0). The

Baseline MAP value = 0.326.
wπ/wδ Scoring Scheme

1 2

0 0.016 0.019
1 0.143 0.060
2 0.285 0.240
3 0.339 0.276
4 0.346 0.289
5 0.353 0.332
6 0.353 0.338
7 0.353 0.340
8 0.353 0.341
9 0.353 0.346

Table 2: MAP values for various wπ/wδ using dura-
tions. The best values for each wπ/wδ are highlighted.

wπ/wδ MAP
10 0.353106549666292
11 0.353106844200076
12 0.353107176261353

...
18 0.353107351475871
19 0.353107351475871
20 0.353107351475871

Table 3: MAP values for 10≤ wπ/wδ ≤ 20.

baseline performance has a MAP value of 0.326. The
results of using other wπ/wδ values are shown in
Table 2. Due to space limitation, we only show the
results for the scoring schemes that achieve the highest
MAP for at least a value of wπ/wδ . It can be seen that
scoring scheme 1 performs consistently better than the
other scoring schemes for various values of wπ/wδ .
The MAP values for 1 and wπ/wδ ≥ 5 appear to be

approaching an extreme. Therefore, we performed fur-
ther experiments with 10 ≤ wπ/wδ ≤ 20 and obtained
the results shown in Table 3. To assist us determining
up to which wπ/wδ the MAP value keeps increasing,
we use 15 figures behind decimal point. We can see
that the MAP values with wπ/wδ starting from 17 are
unchanging. See Figure 4 for the plot of MAP values
with scoring scheme 1.
The best obtainedMAP value is thus far 0.353. This

is slightly higher than the baseline value of 0.326. We
analyse further whether the two means are significantly
different using a paired t-test as has been done else-
where [25, 26]. It is found that incorporating duration
information using the vector model does not lead to
significant performance gain (p> 0.2).
The best scoring method, scoring scheme 1, implies

that the “l” is treated the same as “L”, and “s” is treated
the same as “S”. This is evident as b = c = d and e =
f = g = h = i. Therefore, if we were to remove the
distinction between “much longer” and “a little longer,”
and also “much shorter” and “a little shorter,” we would
obtain representations with three distinct symbols (al-
phabets). Thus, the entropy [37], or the minimum num-
ber of bits required to store a symbol, defined as:

45

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0 5 10 15 20

M
A

P

wπ/wδ

Durations, scoring scheme 1

Baseline

Figure 4: MAP values for pitch and duration matching
using scoring scheme 1.

H =−
n

∑
i=1
P(i) log2P(i) (3)

where P(i) is the probability that the symbol i occurs,
would be lower. We performed an informetric analysis
as in Downie [3, 4], except that the sequences in
our collection were not segmented into n-grams as
our experiment assumed a unigram model. With the
five-alphabet rhythm standardisation, the entropy of
our whole collection is 1.858. With the three-alphabet
rhtyhm standardisation, the entropy decreases to
1.491. A decrease in entropy also implies a decrease
in information. However, our result shows that with
less entropy, the effectiveness of retrieval increases.
While Downie [3] believed that a higher information
content of n-grams should cause retrieval performance
to be better, our informetric analysis of our collection
with a unigram model suggests that entropy itself may
not be sufficient as an informetric analysis measure
of likelihood that target pieces will be ranked higher
(that is, high effectiveness). However, we are not
certain whether Downie was referring to effectiveness
or efficiency. The context hints that it was efficiency.
What other measures should be used for effectiveness
remains an open question.
We have shown that with the method we propose,

duration information does not significantly improve re-
trieval performance. However, as we shall see shortly,
using inter-onset intervals yields a different outcome.

7 Using Inter-Onset Intervals
One advantage of using inter-onset intervals compared
to durations is that inter-onset intervals are less suscep-
tible to variations in articulations and are more sensitive
to rhythmic variations. As an illustration, let us suppose
that we have three melodic fragments as shown in Fig-
ure 5.
Our point of interest is the second and third

notes. Using durations, the extended duration contour
standardisation is “SL” for the three cases. In other
words, rhythmic pattern differences are not captured.

(1)

(2)

(3)

Figure 5: Melodic fragments with different note dura-
tions.
Algorithm 2 ALL-MONO-IOI melody extraction algo-
rithm. A note is expressed as a tuple n= 〈p,d,o〉where
p is the pitch, d is the duration, and o is the onset
time. The base index is 0. P is the sequence of the
representative bass part. “πx” is the relational operator
for projecting the x attribute.
Require: array of notes N
Sort N by ascending onset time as the first sort key
and descending pitch as the second sort key.
{Start taking the highest note at any onset time.}
for i= 0 . . . |N|−2 do
if (πoni �= πoni+1) then
Append πpni to P.

end if
d′ ← πoni+1−πoni
ni←

〈
πpni,d′,πoni

〉
end for
Append πpn|N|−1 to P.
{End.}
return P

Using inter-onset intervals, the extended duration
contour standardisation is “SL” for the first and
second cases, and “Ll” for the third case. The
difference between the first and second melodies
is the articulation of the notes in the first bar, yet
they both have the same rhythmic pattern. The
difference is successfully picked up by inter-onset
intervals. A musically-trained user is less likely to
make rhythmic pattern errors when issuing queries.
Articulation differences are less often considered as
errors. Therefore, inter-onset intervals are more likely
to be viable to improve retrieval effectiveness.
We modified the ALL-MONO algorithm so that the

durations of a note is replaced by the time interval
between itself and the following note. This is done
indiscriminatively on the highest note at all onset times
(excluding, the last note). Therefore, the difference
between ALL-MONO and this algorithm (called ALL-
MONO-IOI herethereafter) is that in ALL-MONO-IOI,
there is no check whether the time to finish playing
a note is after its following note. ALL-MONO-IOI is
given as Algorithm 2.
Using ALL-MONO-IOI, we obtained a new set

of duration-based representations of the pieces in
our query set and collection. We used the same
experimental setup outlined in Section 5, with this new

46

Baseline MAP value = 0.326.
wπ/wδ Scoring Scheme

1 2 12 13

0 0.025 0.017 0.035 0.022
1 0.176 0.130 0.051 0.051
2 0.322 0.236 0.156 0.207
3 0.318 0.271 0.232 0.281
4 0.320 0.318 0.262 0.307
5 0.319 0.324 0.314 0.313
6 0.319 0.327 0.327 0.353
7 0.319 0.327 0.346 0.356
8 0.319 0.327 0.348 0.356
9 0.319 0.327 0.348 0.356

Table 4: MAP values for various wπ/wδ using inter-
onset intervals. The best values for each wπ/wδ are
highlighted.

wπ/wδ MAP
10 0.355544269543587
11 0.355550207447156
12 0.355571651845875

...
38 0.355704894395940
39 0.355704894395940
40 0.355704894395940

Table 5: MAP values for 10≤ wπ/wδ ≤ 40.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 0 5 10 15 20 25 30 35 40

M
A

P

wπ/wδ

Inter-onset intervals, scoring scheme 13

Baseline

Figure 6: MAP values for pitch and inter-onset interval
matching using scoring scheme 13.

set of representations. The MAP scores are given in
Table 4.
TheMAP values for 13 andwπ/wδ ≥ 5 appear to be

approaching an extreme. Therefore, we performed fur-
ther experiments with 10 ≤ wπ/wδ ≤ 40 and obtained
the results shown in Table 5. To assist us determining
whether there is an asymptotic value, we use 15 figures
behind decimal point. We can see that the MAP values
with wπ/wδ starting from 38 are consistent. See Fig-
ure 6 for the plot of MAP values with scoring scheme
13.
The best obtainedMAP value thus far is 0.356. This

is slightly higher than the baseline value of 0.326. We
analyse further whether the two means are significantly
different using a paired t-test. It is found that incorpo-
rating inter-onset intervals using the vector model im-
plies significant performance gain (p< 0.05).

8 Summary
We have compared two approaches of using duration-
based information to improve retrieval effectiveness in
this paper.
The first approach employs the durations of notes

in the representative melody as extracted by the ALL-
MONO algorithm [29]. Although the use of duration in
addition to pitch improves retrieval effectiveness over
the use of pitch only, the improvement is not significant.
The second approach uses a modified version of ALL-
MONO called ALL-MONO-IOI, which is similar to ALL-
MONO except that the inter-onset intervals of represen-
tative melody notes are calculated. Although the mod-
ification is minor, our experimental setup shows that
it has a significant impact on retrieval using duration-
based information along with pitch. The retrieval ef-
fectiveness is improved significantly compared to using
pitch only.

Acknowledgements We thank Falk Scholer and the
anonymous reviewers for their input.

References
[1] J. C. C. Chen and A. L. P. Chen. Query by rhythm: An

approach for song retrieval in music databases. In Pro-
ceedings of IEEE International Workshop on Research
Issues in Data Engineering, pages 139–146, Feb. 1998.

[2] R. B. Dannenberg, W. P. Birmingham, G. Tzanetakis,
C. Meek, N. Hu, and B. Pardo. The Musart testbed for
query-by-humming evaluation. In Hoos and Bainbridge
[9], pages 41–47.

[3] J. S. Downie. Informetrics and music information
retrieval. In Canadian Association for Information
Science Proceedings of the 25rd Annual Conference,
pages 295–308. CAIS, June 1997.

[4] J. S. Downie. Informetrics and music information
retrieval: An informetric examination of a folksong
database. In Canadian Association for Information
Science Proceedings of the 26rd Annual Conference.
CAIS, June 1998.

[5] P. Ferraro and P. Hanna. Optimizations of local edition
for evaluating similarity between monophonic musical
sequences. In Proceedings of Recherche d’Information
Assistée par Ordinateur 2007, Pittsburgh, USA, June
2007.

[6] M. Fingerhut, editor. Proceedings of the Third Inter-
national Conference on Music Information Retrieval,
Paris, France, Oct. 2002. IRCAM-Centre Pompidou.

[7] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, Cambridge, UK,
1997.

[8] P. Hanna, P. Ferraro, and M. Robine. On optimizing
the editing algorithms for evaluating similarity between
monophonic musical sequences. Journal of New Music
Research, 36(4):267–279, Dec. 2007.

[9] H. H. Hoos and D. Bainbridge, editors. Proceedings
of the Fourth International Conference on Music In-
formation Retrieval, Baltimore, USA, Oct. 2003. Johns
Hopkins University.

47

[10] International Music Information Retrieval Systems
Evaluation Laboratory, editor. Proceedings of the
Second Annual Music Information Retrieval Evaluation
eXchange, Oct. 2006. URL http://www.music-ir.

org/mirex2006/.
[11] T. Kageyama, K. Mochizuki, and Y. Takashima. Melody

retrieval with humming. In Proceedings of Interna-
tional Computer Music Conference 1993, pages 349–
351, 1993.

[12] K. Lemström, P. Laine, and S. Perttu. Using relative
interval slope in music information retrieval. In Pro-
ceedings of International Computer Music Conference
1999, pages 317–320, Beijing, China, Oct. 1999.

[13] K. Lemström, N. Mikkilä, V. Mäkinen, and E. Ukko-
nen. Sweepline and recursive geometric algorithms for
melodic similarity. In International Music Information
Retrieval Systems Evaluation Laboratory [10]. URL
http://www.music-ir.org/mirex2006/.

[14] D. Mazzoni and R. B. Dannenberg. Melody matching
directly from audio. In J. S. Downie and D. Bainbridge,
editors, Proceedings of the Second International Sym-
posium on Music Information Retrieval, pages 17–18,
Bloomington, USA, Oct. 2001.

[15] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Hen-
derson, and S. J. Cunningham. Towards the digital
music library: Tune retrieval from acoustic input. In
Proceedings of ACM Digital Libraries 1996, 1996.

[16] C. Meek and W. Birmingham. Johnny can’t sing: A
comprehensive error model for sung music queries. In
Fingerhut [6], pages 124–132.

[17] A. Moles. Information Theory and Esthetic Perception.
University of Illinois Press, Urbana, US, 1966.

[18] M.Mongeau and D. Sankoff. Comparison of musical se-
quences. In Computers and the Humanities, volume 24,
pages 161–175. Kluwer, 1990.

[19] B. Pardo and W. Birmingham. Encoding timing infor-
mation for musical query matching. In Fingerhut [6].

[20] L. Sitsky. The Reproducing Piano Roll. Department
of Education, Canberra, Australia, Mar. 1979. ISBN 0-
642-90543-6.

[21] I. S. H. Suyoto. Microtonal music information retrieval.
Master’s thesis, School of Computer Science and Infor-
mation Technology, RMIT, Melbourne, Australia, 2003.

[22] I. S. H. Suyoto and A. L. Uitdenbogerd. Exploring
microtonal matching. In C. L. Buyoli and R. Loureiro,
editors, Proceedings of the Fifth International Con-
ference on Music Information Retrieval, pages 224–
231, Barcelona, Spain, Oct. 2004. Audiovisual Institute
Pompeu Fabra University.

[23] I. S. H. Suyoto and A. L. Uitdenbogerd. Effectiveness
of note duration information for music retrieval. In
L. Zhou, B. C. Ooi, and X. Meng, editors, Proceedings
of the Tenth International Conference on Database
Systems for Advanced Applications, pages 265–275.
Springer-Verlag, Apr. 2005. Published as LNCS 3453.

[24] I. S. H. Suyoto and A. L. Uitdenbogerd. Simple
efficient n-gram indexing for effective melody retrieval.
In International Music Information Retrieval Systems
Evaluation Laboratory, editor, Proceedings of the First
Annual Music Information Retrieval Evaluation eX-
change, Sept. 2005. URL http://www.music-ir.

org/mirex2005/.

[25] I. S. H. Suyoto, A. L. Uitdenbogerd, and F. Scholer.
Effective retrieval of polyphonic audio with polyphonic
symbolic queries. In J. Z. Wang, N. Boujemaa,
A. Del Bimbo, and J. Li, editors, Proceedings of the
9th ACM SIGMM International Workshop on Multime-
dia Information Retrieval, pages 105–114, Augsburg,
Germany, Sept. 2007.

[26] I. S. H. Suyoto, A. L. Uitdenbogerd, and F. Scholer.
Searching musical audio using symbolic queries. IEEE
Transactions on Audio, Speech, and Language Process-
ing, 16(2):372–381, Feb. 2008.

[27] R. Typke, F.Wiering, and R. C. Veltkamp. MIREX sym-
bolic melodic similarity and query by singing/humming.
In International Music Information Retrieval Systems
Evaluation Laboratory [10]. URL http://www.

music-ir.org/mirex2006/.
[28] R. Typke, F. Wiering, and R. C. Veltkamp. Trans-

portation distances and human perception of melodic
similarity. ESCOM Musicae Scientiae, (Discussion
Forum 4A-2007):153–181, 2007.

[29] A. Uitdenbogerd and J. Zobel. Melodic matching
techniques for large music databases. In D. Bulterman,
K. Jeffay, and H. J. Zhang, editors, Proceedings of the
7th ACM International Conference on Multimedia ’99,
pages 57–66, Orlando, USA, Nov. 1999. ACM Press.

[30] A. L. Uitdenbogerd. Music Information Retrieval Tech-
nology. PhD thesis, School of Computer Science and
Information Technology, RMIT, Melbourne, Australia,
2002.

[31] A. L. Uitdenbogerd. Variations on local alignment for
specific query types. In International Music Information
Retrieval Systems Evaluation Laboratory [10]. URL
http://www.music-ir.org/mirex2006/.

[32] A. L. Uitdenbogerd. N-gram pattern matching and
dynamic programming for symbolic melody search.
In International Music Information Retrieval Systems
Evaluation Laboratory, editor, Proceedings of the Third
Annual Music Information Retrieval Evaluation eX-
change, Sept. 2007. URL http://www.music-ir.

org/mirex2007/.
[33] A. L. Uitdenbogerd and Y. W. Yap. Was Parsons right?

An experiment in usability of music representations for
melody-based music retrieval. In Hoos and Bainbridge
[9], pages 75–79.

[34] A. L. Uitdenbogerd and J. Zobel. Music ranking tech-
niques evaluated. In M. Oudshoorn, editor, Proceed-
ings of the Twenty-Fifth Australasian Computer Science
Conference, pages 275–283, Melbourne, Australia, Jan.
2002.

[35] A. L. Uitdenbogerd, A. Chattaraj, and J. Zobel. Method-
ologies for evaluation of music retrieval systems. IN-
FORMS Journal of Computing, 18(3):339–347, 2006.
ISSN 1091-9856.

[36] R. H. van Leuken, R. C. Veltkamp, and R. Typke.
Selecting vantage objects for similarity indexing. In
Y. Y. Tang, P. Wang, G. Lorette, and D. S. Yeung, ed-
itors, Proceedings of the 18th International Conference
on Pattern Recognition, pages 453–456, Hong Kong,
China, Aug. 2006.

[37] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishing, San Fransisco,
USA, second edition, 1999. ISBN 1-55860-570-3.

48

Extraction of Named Entities from Tables in Gene Mutation Literature

Wern Wong2, David Martinez1,2, Lawrence Cavedon1

1NICTA Victoria Research Laboratory
2Dept of Computer Science and Software Engineering

The University of Melbourne
{wongwl,davidm,lcavedon}@csse.unimelb.edu.au

Abstract Information extraction and text mining
are receiving growing attention as useful techniques
for addressing the crucial information bottleneck in
the biomedical domain. We investigate the challenge
of extracting information about genetic mutations
from tables, an important source of information in
scientific papers. We use various machine learning
algorithms and feature sets, and evaluate performance
in extracting fields associated with an existing hand-
created database of mutations. We then show how
this technique can be leveraged to improve on existing
named entity detection systems for mutations.

1 Introduction and Background
Biomedical science is a large, fast-paced and rapidly
growing field. The volume of papers being written
every year presents a serious bottleneck to researchers
in the field, both in terms of keeping pace with
discoveries and with checking for connections to
be made with observations made in laboratories. A
large amount of biomedical researchers’ and workers’
time is spent searching and reading the literature for
information salient to a particular experimental result
or observation in a clinical or diagnostic laboratory.
Information extraction and text mining techniques

are garnering much interest in the biomedical space due
to their potential for alleviating the information bottle-
neck experienced by researchers and clinical workers
(e.g. [2]). We are interested in applying such meth-
ods to aiding the construction of databases of biomedi-
cal information, in particular information about genetic
mutations. Such databases are currently constructed by
hand: a long, involved, time-consuming and human-
intensive process. Each paper considered for inclusion
in the database must be read, the interesting data iden-
tified and then entered by hand into a database.1
In this paper, we focus on the task of extracting

information from tables in biomedical research
papers. Tables present a succinct and information-rich

1Karamis et al [4] illustrate how even simple tools can have an
impact on improving the database-curation process.

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

format for providing information, and are particularly
important when reporting results in biological and
medical research papers: the important results in such
papers may be reported only in tabular form and not
in the main text at all. Table processing presents its
own challenges, especially that of detecting tables in
text and dealing with structure—see [8] for a survey
on table recognition and [3] for a discussion on
processing tables in web documents. While interesting
approaches to detecting and processing tables have
been used in various applications—e.g. Wei et al [5]
perform question-answering over tables extracted from
financial documents—we know of no previous attempt
to process tables in biomedical documents.
Our extraction task is grounded in the specific

context of the Mismatch Repair (MMR) Database
compiled at the Memorial University of Newfoundland
[7]—a database of known genetic mutations related to
hereditary non-polyposis colorectal cancer (HNPCC),
a hereditary form of bowel cancer. The MMR Database
contains information on genetic mutations known to
be related to HNPCC, along with links to the research
papers from which the database has been constructed.2
From the database and its links to papers, we were
able to construct a collection of tables related to
HNPCC mutations, and then use the MMR database
records themselves as a gold standard for evaluating
our techniques. As at May 2008, the MMR database
contained a total of 5,491 records on mutations that
occur on any one of four genes that have been identified
as related to colon cancer. An example record from the
MMR database is the following:

MLH1 | Exon13 | c.1491delG | Yamamoto et al. | 9500462

Respectively, this record contains: the gene; exon;
mutation; citation of the paper the information was
sourced from;3 and the paper’s PubMedID (PubMedID
is a unique identifier assigned to papers whose abstract
is contained in the MEDLINE collection). These
fields are important because they contain information

2I.e. a team of geneticists manually trawled the biomedical
literature for information on HNPCC-related mutation information,
and added links to any papers relevant to those mutations in the
context of HNPCC.

3This field has been abbreviated. We have also omitted fields such
as “internal id”.

49

researchers are directly interested in (gene, exon,
mutation) and the paper said information was found
in. Note that if a gene/mutation pair is referenced
in multiple papers, then there are correspondingly
multiple entries in the database. Conversely, if a single
paper mentions multiple (relevant) genes, then that
paper is mentioned in multiple database records. Our
goal in this paper is to work towards automatic aids for
the curation of this database.

2 Experimental Setting
In this section, we describe the process of creating our
experimental dataset and the task design.

2.1 Creating the Dataset
Our collection of tables was extracted via the MMR
database, leveraging the MEDLINE collection of
biomedical abstracts. We first collected all information
available in the hand-curated MMR records, obtaining
a total of 5,491 mutations linked to 719 distinct
PubMedIDs4. We next used a crawler to retrieve
the corresponding full-text articles (identified by
PubMedIDs stored in the MMR records) by following
links from the PubMed interface, and downloaded
those papers that had a full-text HTML version, and
which contained at least one content table. Tables
were then extracted from the full-text HTML files. It
is worth noting that the tables were already present
as links to separate HTML files rather than being
presented as inline tables, making this process easier.
Papers that did not contain tables in HTML format
were eliminated.
Our final collection consisted of 70 papers from the

original 719 PubMedIDs. The articles are linked to
784 MMR records (mutations), which constitutes our
gold standard hand-curated annotation. The collection
contains 197 tables in all.5
The tables in the collection were then pre-processed

into a form that more readily allowed experimentation.
The tables were split into three parts: column headers,
row headers, and data cells. This was done based on
the HTML formatting, which was consistent through-
out the data set as the tables were automatically gener-
ated: cells were replicated when they spanned multiple
rows or columns; img tags were replaced by the alter-
nate text (when available); and hr tags were used to
separate out column headers from the cells themselves.
Row headers were detected by checking if the top left
cell of the table was blank, a pattern which occurred
in all row-major tables. We acknowledge that this pro-
cessing may be specific to the vagaries of the particular
format of the HTML generation used by PubMed (from
which we sourced the tables). However, our whole task
is specific to this domain; further, our focus is on the

4Data was downloaded from the web interface in May 2008.
5This collection could be increased in size by more putting more

effort into retrieving documents linked to MMR records.

data extraction task rather than the actual detection of
row/column headers.

2.2 Task Design
In order to extract mutations from tables, we first per-
formed classification of full columns/rows into relevant
entities. Since the content of a column (or row, depend-
ing on whether the table was row- or column-oriented)
tends to be homogeneous, this allowed us to build clas-
sifiers that can identify full vectors of relevant entities
in a single step. We refer to this task as table vector
classification.
We identified the following entities as relevant:

Gene, Exon, Mutation, Codon, and Statistic. The first
four were chosen directly from the MMR Database.
We decided to include “Statistic” after inspecting
the tabular dataset, since we found that this provides
relevant information about the importance of a given
mutation. From the five entities, Mutation is the most
informative for our final information extraction goal.
The next step was to hand-annotate the headers of

the 197 tables in our collection by using the five entities
and the class “Other” as the tagset. Some headers be-
longed to more that one class, because the entities were
collapsed into a single field of the table.
We performed two tasks: vector classification, and

mutation extraction. The evaluation for the vector clas-
sification step was done using precision, recall and f-
score, micro-averaged among the classes. For the ma-
chine learning (ML) algorithms, we used stratified 10-
fold cross-validation. For mutation extraction we focus
on the mutation class, and produce precision and recall
against the subset of the hand-curated MMR database.

3 Table Vector Classification
We describe here heuristic andML approaches to vector
classification, along with an analysis of their perfor-
mance.

3.1 Heuristic Approach
As a baseline method, we approached the task of
classifying headers by matching the header string to
the names of the classes in a case-insensitive manner.
When the class name was found as a substring of the
header, the class would be assigned to it. For example,
a header string such as “Target Mutation” would be
assigned the class “Mutation”. Some headers had
multiple annotations (e.g. “Gene/Exon”).
For better recall, we also matched synonyms

for the class “Mutation” (the terms “Variation” and
“Missense”) and the class “Statistic” (the terms “No.”,
“Number” and “%”). For the remaining classes we did
not identify other obvious synonyms.
Results are shown in Table 1. Precision was very

low for the “Mutation” class, illustrating that different
types of information are provided under this heading;
e.g. the heading “Mutation detected” above a “Gene”

50

Class Precision Recall FScore
Gene 0.537 0.620 0.575
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.283 0.301 0.292
Statistic 0.911 0.324 0.478
Other 0.581 0.903 0.707
Micro Avg. 0.693 0.614 0.651

Table 1: Naive Baseline results across the different
classes and micro-averaged

Class Precision Recall FScore
Gene 0.537 0.611 0.571
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.600 0.452 0.515
Statistic 0.911 0.340 0.495
Other 0.579 0.910 0.708
Micro Avg. 0.715 0.633 0.672

Table 2: Results integrating MutationFinder across the
different classes and micro-averaged

vector. Recall was low for most classes, suggesting that
more sophisticated approaches are required.
Our second step was to build a more informed clas-

sifier for the ”Mutation” class. We applied the muta-
tion NER tool MutationFinder [1] to the text in cells
to identify which table-vectors contained at least one
mutation mention. Any such vectors were classified
as mutations. The results are shown in Table 2. This
approach caused the “Mutation” results to improve, but
the overall f-scores leave room for improvement.

3.2 Machine Learning Methods
For the ML experiments we used the Weka [6] toolkit,
as it contains a wide selection of in-built algorithms.
As a baseline, we applied the majority class from the
training data to all test instances. We applied the fol-
lowingML algorithms fromWeka6: Naive Bayes (NB),
Support Vector Machines (SVM), Propositional Rule
Learner (JRip), and Decision Trees (J48).
In order to define our feature sets, we used the text

in both the headers and cells of the tables. Other sources
of information, such as captions or the running text re-
ferring to the table where not employed at this stage,
but may also provide valuable information. We used
four feature sets:
• Basic (Basic): header string, the average and me-
dian cell lengths, and a binary feature indicating
whether the data in the cells was numeric;

• Cell Bag-of-Words (C bow): Bag of words over
the tokens in the table cells;

• Header Bag-of-Words (H bow): Bag of words
over the tokens in the header strings;

• Header + Cell Bag-of-Words (HC bow): Bags
of words formed by the tokens in headers and cells,
represented as different feature types.

6We applied a number of other ML algorithms as well, but these
showed significantly lesser performance.

Algorithm
Feature Sets

Basic C bow H bow HC bow
Maj. Class 0.288
NB 0.614 0.454 0.678 0.581
SVM 0.717 0.599 0.839 0.816
JRip 0.564 0.493 0.790 0.749
J48 0.288 0.532 0.793 0.782

Table 3: Micro-Averaged FScores for ML algorithms.
The best results per column are given in bold.

Class Precision Recall FScore
Gene 0.778 0.737 0.757
Exon 0.786 0.707 0.745
Codon 0.833 0.882 0.857
Mutation 0.656 0.679 0.667
Statistic 0.919 0.853 0.885
Other 0.820 0.884 0.850
Micro Avg 0.839 0.841 0.839

Table 4: Results for SVM and the feature set H bow per
class and micro-averaged.

The micro-averaged results of the different learning
methods and feature sets are shown in Table 3. Re-
garding the feature sets, we can see that the best per-
formance is obtained by using the headers as bag-of-
words, while the content of the cells seems to be too
sparse to guide the learning methods. SVM is clearly
the best algorithm for this dataset, with JRip and J48
following, and NB performingworst of the four in most
cases. Only for the basic feature set (with very few
features) does NB outperform JRip and J48.
Overall, the results show that the ML approach is

significantly superior to the baselines when relying on
the header bag of words7; SVM is able to reach a high
f-score of 83.9% in predicting the relevant entities.
We break down the results per class in Table 4, us-

ing the outputs from SVM and feature-set H bow. We
can see that all classes improve over the heuristic base-
lines. There is a big increase for the classes “Gene” and
“Statistic”, and all classes except mutation are above
70% f-score. “Mutation” is the most difficult class to
predict, but it still reaches 66.7% f-score, which can be
helpful for some tasks, as we explore in Section 4.

4 Mutation Extraction
We applied the results of our classifier to a real-world
application: the detection of mutations in the literature
for the MMR Database project. Table vector classifi-
cation allows us to extract lists of candidate mutation
names from tables to be added to the database. In order
to test the viability of this approach, we measured the
precision and recall of the system in detecting the ex-
isting hand-curated mutations in MMR. Recall is more
important in this setting, since it shows the proportion
of mutation mentions that we are able to obtain with our
technique. Precision will give an indication of the rate
of false positives, but note that we also consider as false
positives those valid mutations that were not interesting

7As shown by a paired t-test at 99% confidence.

51

System Precision Recall
MF (full text) 0.01 (6 / 438) 0.01 (4 / 717)
Table Vector classifier 0.09 (153 / 1702) 0.21 (153 / 717)
Gold standard heads 0.11 (198 / 1847) 0.28 (198 / 717)

Table 5: Mutation detection results, Table Vector clas-
sifier in bold.

for MMR, and therefore the reported precision will be
artificially low.
As state-of-the-art mutation detection system, we

apply MutationFinder (MF) [1] to the full text (includ-
ing tables) of the journal collection. This allows us to
compare the results of our table-processing approach
over an existing tool that parses the full text.
The evaluation results are shown in Table 5.8 We

can see that the goldstandard table vector annotation
retrieves 28% of the mutations, at a precision of 11%.
This means that by looking only at the tables we have
an upper-bound of 28% on the percentage of relevant
mutations that we can extract. In comparison, MF is
only able to retrieve 1% of the mutations by looking at
full articles. This happens because MF targets muta-
tion mentions that follow a specific nomenclature, and
the mentions that it is able to detect are not the ones
covered in the MMR Database. Finally, our automatic
table vector classifier is able to retrieve 21% of the gold
standard mutations at a precision of 9%, which is 75%
of the upperbound.
The precision figures are low for the goldstandard

and table vector classifier. The reason for this is that we
do not discriminate automatically for mutations of in-
terest for the MMR Database, and valid mutation men-
tions are often classified as negative. All in all, the
vector classifier discriminates 1,702 mutation cells out
of a total of 27,700 unique cells in the collection, and it
effectively identifies 153 out of the 198 relevant muta-
tions present in the tabular data.
Finally, after the evaluation process we observed

that many false mutation candidates could be removed
by discarding those that do not contain two consecutive
digits or any of the following n-grams: “c.”, “p.”, ’>’,
“del”, “ins”, “dup”. This heuristic raises the precision
of the system to 15.5% (153 true positives out of 989)
with no cost in recall, which would result in greater
saved time for database curators in a practical setting.

5 Discussion
Our preliminary results on the task of identifying rel-
evant entities from gene mutation literature show that
targeting tables can be a fruitful approach for text min-
ing. By relying on ML methods and simple bag-of-
words features, we were able to achieve good perfor-
mance over a number of selected entities, well above
header word-matching baselines. This allowed us to
identify lists of mentions of relevant entities with min-

8Because of the different mutation nomenclature formats used,
comparison to gold standard required manual checking.

imal effort, reaching 21% of recall over a hand-curated
database.
Another advantage of our approach is that the an-

notation of examples for training and evaluation is con-
siderably easier, since many entities can be annotated
in a single step. This opens the way to faster annotation
of other entities of interest in the biomedical domain,
which can present a wide variety of forms and non-
standard terminology. However, since a table vector of
homogeneous information may include representatives
of the heterogeneous nomenclature schemes, classifica-
tion of a whole column or row potentially helps nullify
the effect of the terminological variability.
For future work, we plan to study different types of

features for better representing the entities targeted in
this work. Especially for mutation mentions, we ob-
served that the presence of certain ngrams (e.g. ”del”)
can be a strong indicator for this class. Another goal
is to increase the size of our dataset of articles by im-
proving our retrieval process, and by hand-annotating
the retrieved table vectors for further experimentation.
Acknowledgements NICTA is funded by the Australian
government as represented by Dept. of Broadband, Commu-
nication and Digital Economy, and the Australian Research
Council through the ICT Centre of Excellence programme.
Thanks to Mike Woods and his colleagues at the Memorial
University of Newfoundland for making the MMR database
available to us. Eric Huang wrote several of the scripts men-
tioned in Section 2 for creating the table collection.

References
[1] J. G. Caporaso, W. A. B. Jr., D. A. Randolph, K. B. Co-

hen, and L. Hunter. Mutationfinder: A high-performance
system for extracting point mutation mentions from text.
Bioinformatics, 23(14):1862–1865, 2007.

[2] A. M. Cohen and W. R. Hersh. A survey of current
work in biomedical text mining : Annual progress in
bioinformatics. Briefings in Bioinformatics, 6(1), 2005.

[3] M. Hurst. Layout and language: Challenges for
table understanding on the web. Technical report,
WhizBang!Labs, 2001.

[4] N. Karamanis, R. Seal, I. Lewin, P. McQuilton, A. Vla-
chos, C. Gasperin, R. Drysdale, and T. Briscoe. Natural
language processing in aid of flybase curators. BMC
Bioinformatics, 9:193–204, 2008.

[5] X. Wei, W. Croft, and D. Pinto. Question answering
performance on table data. Proceedings of National
Conference on Digital Government Research, 2004.

[6] I. H. Witten and E. Frank. Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
San Francisco, 2nd edition, 2005.

[7] M. Woods, P. Williams, A. Careen, L. Edwards,
S. Bartlett, J. McLaughlin, and H. B. Younghusband. A
new variant database for mismatch repair genes associ-
ated with lynch syndrome. Hum. Mut., 28, 2007.

[8] R. Zanibbi, D. Bolstein, and J. R. Cordy. A survey of
table recognition. Int’l J. on Document Analysis and
Recognition, 7(1), 2004.

52

Facilitating Biomedical Systematic Reviews
Using Ranked Text Retrieval and Classification

David Martinez Sarvnaz Karimi Lawrence Cavedon Timothy Baldwin
NICTA Victoria Research Laboratory

The University of Melbourne
Victoria 3010, Australia

{davidm,skarimi,lcavedon,tim}@csse.unimelb.edu.au

Abstract Searching and selecting articles to be
included in systematic reviews is a real challenge for
healthcare agencies responsible for publishing these
reviews. The current practice of manually reviewing
all papers returned by complex hand-crafted boolean
queries is human labour-intensive and difficult to
maintain. We demonstrate a two-stage searching
system that takes advantage of ranked queries and
support-vector machine text classification to assist in
the retrieval of relevant articles, and to restrict results
to higher-quality documents. Our proposed approach
shows significant work saved in the systematic review
process over a baseline of a keyword-based retrieval
system.

Keywords Information Retrieval, Machine Learning.

1 Introduction
The growth and applicability of evidence-based
medicine (EBM) has enormous potential for the
way medical treatments are applied throughout the
world. However, the task of preparing systematic
clinical reviews for EBM is currently human workload-
intensive. A systematic review is generally formulated
against a specific clinical question, such as: In a
pre-hospital setting, what is the effect of intubation vs
no intubation in traumatic brain injury?
As a general framework, systematic reviews are

conducted using the following main steps [3]:
1. formulate a high priority problem and develop the
inclusion criteria (i.e. criteria for judging an article
as relevant to the clinical question);

2. search through all the relevant published studies or
articles. This step involves formulating a complex
boolean query and submitting it to a number of
databases of medical literature;

3. assess eligibility of retrieved articles, and extract
data. The assessment involves judgement against
the inclusion (and possibly exclusion) criteria;

4. analyse and present findings;
5. interpret results and draw conclusions.

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

While almost all these steps are labour-intensive,
the second and third steps are particularly important,
yet time-consuming. General practice in performing
this searching stage involves developing boolean
queries over well-known medical databases, such as
Ovid MEDLINE, PubMed, or EMBase. Forming
these queries, often as long as sixty lines, is not
straightforward, with search experts constantly
modifying their queries and seeking for keywords
to be augmented to the query to improve recall.
Also, boolean queries, even if potentially effective in
retrieving most of existing relevant documents, do not
rank the retrieved documents, and therefore all the
returned articles must be scanned to specify candidates
to be studied in detail.
Further, the assessment stage is often formulated in

two steps:

1. reading the abstracts returned by the boolean query
to determine if the associated papers are candi-
dates for the review. This list may number in the
tens of thousands;

2. retrieving and reading full-text documents for
those which are included, and judging further
which of these should be included in the review
itself. This collection may number in the hundreds
or thousands.

In this paper we investigate this searching problem
in the framework of keyword-based text information
retrieval (IR) and text classification. We are particularly
interested in fully or partially migrating the searching
step from boolean to ranked, as implemented in most
popular search engines. Differences between retrieval
for systematic reviews and standard IR tasks makes this
problem challenging. In the searching stage of a sys-
tematic review, there is no simple specific topic to be
looked up. Queries can be a combination of subject of
the review, research questions to be addressed, and in-
clusion criteria to be observed. Unlike standard IR, re-
call is of crucial importance to ensure that no important
evidence in regard to a clinical question is overlooked.
We investigate a two-stage search system that ini-

tiates a search using initial information on a priority
research topic, then through a re-ranking scheme based

53

on text classification assist users to find relevant infor-
mation more quickly. In particular, we estimate the
potential amount of work saved by using such an auto-
mated system, as compared to performingmanual read-
ing and checking of all results returned by a boolean
query, as is current practice.

2 Background
A number of organisations, such as the Cochrane
Collaboration1 and the Agency for Healthcare
Research and Quality (AHRQ)2 publish systematic
reviews, as well as associated data for each step in
the process: the boolean queries, search results, and
inclusion criteria used. The enterprise of producing
reviews, as well as updating the existing ones, can be
massively time-consuming: a systematic review for a
single clinical question may take a number of person-
years to compile. Hence, any automated support for
the process has the potential to be extremely valuable.
Work has recently been performed in improving the

search process so that a higher quality set of documents
are retrieved by the first of the search steps. In par-
ticular, document classification techniques are used to
filter the set returned by the search, and thereby reduce
the work of manually reviewing the articles that are
candidates for inclusion in the final review. Further,
the presence of audit data for existing reviews provides
a valuable resource for evaluating performance and ef-
fectiveness of the techniques developed.
Cohen et al [2] specifically address the issue of re-

ducing workload involved in preparing systematic re-
views on specific classes of drugs. They construct a
classification system, using a voting perceptron classi-
fier [5], trained on data associated with 15 drug reviews
published by AHRQ. The document set for each re-
view topic was the set of MEDLINE abstracts returned
by the initial search associated with that review, lim-
ited to those which were also contained in the TREC
2004 Genomics Track document corpus (so that full-
text papers would be available). The classifier’s fea-
ture set was constructed from these abstracts. Features
included: bags-of-words constructed from title and ab-
stract; MeSH (Medical Subject Headings) terms asso-
ciated with the abstracts; and MEDLINE publication
type. Inclusion and exclusion results for each abstract,
as published by AHRQ, were used to create the classi-
fication gold standard.
Cohen et al evaluate their classifier using 5 × 2

cross-validation on the document set. They report
recall and precision for each of the 15 drug reviews,
as well as a measure of work saved, which is designed
to more closely reflect the actual effectiveness of the
classifier in the context of the task. Work saved is the
percentage of papers that meet the published inclusion
criteria which would not have to be manually inspected

1http://www.cochrane.org/
2http://www.ahrq.gov/

(because they were filtered out by the classifier). In
particular, Cohen et al report work saved over random
sampling at recall of 95% (WSS@95). This metric is
described in greater detail in 4.1.
The actual effectiveness of their technique varied

with topic. For 11 of the 15 review topics, WSS@95
was above 10%, which Cohen et al considered to be
a minimum threshold of the technique adding value; it
was estimated that this level would actually result in a
saving of a person-week of effort. Three of the review
topics resulted in a saving of over 50%.
Other research that uses text classification

techniques in the context of EBM do not attempt
to directly estimate “work saved”. Aphinyanaphongs
et al (ATSHA) [1] apply a number of techniques
— Naı̈ve Bayes, AdaBoost, and Support Vector
Machines — to classify documents in various content
areas: etiology, prognosis, diagnosis, and treatment.
Their evaluation involved comparison with a baseline
technique, developed by Haynes et al [6], which uses
PubMed clinical queries to the above four areas. The
EBM source for both baseline and ATSHA’s system
was the ACP Journal Club3. The ACP Journal Club
has expert clinicians who categorise articles from a
broad set of journals into categories including the
ones listed above: this categorisation was the gold
standard. ATSHA created filters from a collection
of MEDLINE records corresponding to 49 journals
referenced by the ACP Journal Club over a given time
period, and these were used to filter articles from those
journals into the 4 categories. ATSHA found that
their machine-learning based categorisation generally
outperformed the query-based categorisation4, and
argue that there is a significant reduction in workload
over both the manual review method and over the time
required to develop the query-filters.
MScanner [7] is a recent, more general-purpose

biomedical classifier used to filter search results; it was
designed for database creation/curation, rather than
creating EBM reviews, with an emphasis on speed.
MScanner uses a Naive Bayes classifier and a compact
feature representation to support the processing of
the whole MEDLINE collection in a reasonable time
(approximately 90 seconds). Poulter et al [7] describe
its effectiveness on a specific classification task as
compared to the use of an expert-developed PubMed
boolean query: on a task with 3,544 results (1,089
relevant, 2,465 irrelevant), MScanner was comparable
to the hand-crafted query in recall and precision up
until about 900 results.

3 A Two-Stage Ranking System
We propose a ranking system that pipelines a generic
text retrieval search engine, and a classifier that re-ranks
the retrieved documents as demonstrated below.

3http://www.acpjc.org
4A slight drop in performance was noted for the diagnosis cate-

gory, attributed to the small number of positive training examples.

54

3.1 Text Retrieval for Systematic Reviews
As mentioned earlier, common practice in literature
review of medical articles is centred around
boolean retrieval. Boolean retrieval has two main
disadvantages: first, there is no ranking available in its
output list, and second, it requires search expertise to
formulate effective complicated queries. To facilitate
this process for systematic reviews some pre-defined
prototype templates have been defined for insertion
into boolean queries. For example, if consideration
should be restricted to only a particular publication
type, such as randomised controlled trials, then a
pre-formed Ovid format boolean query such as that
below can be used as part of the main query [6]:

randomised controlled trial.mp OR
randomised controlled trial.pt

where .mp indicates the term should appear in the title,
abstract, or MeSH headings5, and .pt indicates publi-
cation type. For capturing topical features of the re-
view, however, search experts need to specify appropri-
ate keywords, and their arrangement in the query. For
example, if a review’s focus is pre-hospital intervention,
the query might include:

prehospital.tw.
pre-hospital.tw.
paramedic$.tw.
ambulance$.tw.
out of hospital.tw.
emergency rescue.tw.
emergency resus$.tw.
emergency triage.tw.

where .tw. indicates the search should be applied to
text words of title or abstract. It is worth noting that
stemming as is practised in IR systems is forced by
explicitly using $ in such queries and it is therefore
more easily transferable to a ranked system than other
features.
In contrast, a ranked retrieval system provides

a ranked list, and querying is easier for inexpert
users. However, it does not provide specific features
of a boolean system, such as recursive operators
(e.g. nested AND and OR), or searching over specific
metadata available in the MEDLINE records or other
medical or clinical text collections.
A systematic review is built on a priority research

question that is generally composed of four informa-
tion components: prevention, intervention, comparison,
and outcome; these are collectively known as PICO.
Prevention specifies for which group of patients the in-
formation is targeted; intervention specifies the medi-
cal event whose effect is under investigation; compari-
son is the evidence of producing better or worse results

5MeSH are the Medical Subject Headings, an taxonomy of medi-
cal terms which are manually ascribed to every entry in MEDLINE

against other interventions or no intervention; and out-
come specifies the effect of intervention. For instance, a
question such as “In the pre-hospital setting, what is the
effect of intubation vs. no intubation in traumatic brain
injury (TBI)?” is composed of “traumatic brain injury”
as prevention, “prehospital intubation” as intervention,
“no intubation” as comparison. Outcome is not specifi-
cally listed in the review primary question but would be
listed in its inclusion criteria.
Boolean queries normally cover one or two of these

question components (mostly prevention and interven-
tion), and the rest are inspected manually in the articles
retrieved and marked to be further investigated (we re-
fer to these as the first tier judgements). The remain-
ing components are reported in the review as inclusion
criteria or sometimes as exclusion criteria (listing arti-
cles that did not comply with some criteria). Examples
of such inclusion criteria can be language — as only
English languages studies be eligible — or publication
date. Such criteria can be specific to the topic as well.
For example, an inclusion criteria for the example re-
view topic above could be “mortality” as outcome.
In addition to the main research question targeted

in the review, there may be some research subquestion
under the main review title. Some of these questions
specify disjoint subsets of the final set of articles to be
included in the review. They are sometimes covered by
different boolean queries, which are reported separately
in the review.
All of the above-mentioned characteristics of the

search problem in systematic reviews make the query
formulation process difficult. Many options require in-
vestigation for this domain, both for boolean and ranked
queries. To make the process more effective and time
efficient, specially if ranked queries are considered as
a replacement for long boolean queries, studies on for-
mulating good ranked queries need to be pursued.
In its first stage of ranking, our retrieval system uses

a search engine to run selected ranked queries and gen-
erate a ranked list of retrieved articles. The main con-
cern, however, is forming ranked queries. Candidate in-
formation sources for developing such queries include:
review title; PICO; detailed research questions; and
inclusion criteria. In our experiments we explore for-
mulating ranked queries and evaluate them in terms of
retrieval effectiveness.

3.2 Re-ranking via Text Classification
The complexity of the task explained in the previous
section implies a need for either a powerful ranked re-
trieval procedure that captures all the inclusion criteria
in the review; or, if a traditional ranking is used, it must
be complemented with other components to help to re-
trieve as many relevant documents as possible. We are
interested in a system which first and foremost has high
recall, and as a secondary desideratum, retrieves eligi-
ble papers precisely. It also must reduce the workload
in systematic reviewing as much as possible. There-

55

fore, we study the effect of document classification in a
ranked system framework.
We rely on support vector regression (SVR) [4] to

re-rank the output of the text retrieval system. The basic
idea of regression algorithms is to find a function that
approximates the training instances by minimising the
prediction error. The main difference between SVR and
other regression methods is that a user-specified param-
eter ε defines the lower limit from where deviations are
considered. SVR also tries to maximise the “flatness”
of the function at the same time as minimising the error,
that is, it tries to fit all training instances within a margin
of width 2 × ε. There is also a tradeoff with the pre-
diction error, since it may be necessary to allow some
training instances to have nonzero error in order to build
a better function. This is controlled by the parameterC.
For our experiments, we used the Weka machine

learning toolkit [8] with first order polynomial kernels
and default parameters (ε = 0.001, C = 1). In or-
der to train our classifier we took the top-ranked doc-
uments (from the retrieval engine) at different cutoffs.
The trained model was then applied to the rest of the
collection, and finally the documents were ranked ac-
cording to their weight. Different sizes of training data
were tested to better analyse the classifier’s effective-
ness: the top-ranked 10, 20, or 30 percent of the docu-
ments were used.
As our feature representation we chose two feature

sets. Our basic feature representation consists of a bag-
of-words model including all words occurring in the
“abstract” and “references” sections of the paper. For
our second set of features, we extended the first set
with the MeSH headings of the articles. We performed
separate experiments in order to measure the impact of
the hand-annotated MeSH terms in the results.

4 Experimental Data
MEDLINE is the most popular database of articles of
medical articles freely available to the research com-
munity. A recent collection of 16,676,340 abstracts was
used in this study as document collection. For every ar-
ticle indexed by MEDLINE, there is an entry — known
as a citation— which contains the title and abstract of
the article, accompanied by metadata. The metadata in-
cludes publication date, language, author information,
MeSH headings associated with the article at the time
of its publication, publication type and venue, and a
unique identifier known as a PMID.
We selected 17 systematic reviews from the AHRQ

collection (see Section 2) to test our system and form
our queries. The selection process was based on the
clear provision of included and excluded papers and
search strategies; this means that relevance judgements
were available for the queries (i.e. the documents re-
turned by the boolean query). A list of included and ex-
cluded MEDLINE citations as indicated in the reviews
were extracted using their provided PMIDs as the first
level of relevance judgements (first-tier). We excluded

review AHRQ identifier, Year first-tier second-tier
1 1, 1999 822 184
2 66, 2002 267 67
3 106, 2004 38 12
4 118, 2005 273 92
5 130, 2006 421 198
6 131, 2006 413 83
7 136, 2006 158 117
8 145, 2006 508 104
9 146, 2007 130 34
10 167, 2008 1,103 440
11 138, 2006 796 65
12 57, 2003 647 228
13 11, 1999 329 21
14 100, 2004 535 121
15 103, 2004 932 203
16 110, 2004 2,329 365
17 116, 2005 158 77

Table 1: Specifications of the selected reviews. The
third column represents the total number of articles
initially considered to be further investigated in details
(first-tier), and the fourth column specifies the number
of documents chosen to be included in the review
(second-tier).

any listed paper that was not indexed in MEDLINE.
The same process generated another set of relevance
judgements on documents included in the final review
(second-tier). Specifications of these reviews are listed
in Table 1.

4.1 Evaluation
We evaluated our system on two levels: retrieval that
generate the initial results from ranked querying, and
the final re-ranked list. For the initial text retrieval eval-
uation, we use standard IR metrics: precision and re-
call.
For document classification, we calculate the WSS

measure (work saved over sampling) as defined by Co-
hen et al [2]. WSS measures the number of documents
in the collection that the user would need to hand-check
in order to reach a fixed recall over the relevant docu-
ments. For example, if the fixed recall is 95% and the
documents are randomly ordered, an average of 95% of
the articles would have to be inspected to reach 95%
recall. WSS measures the difference between a given
ranking and a random sampling. Its formula is shown
below

WSS = ((TN +FN)/N)−1+(TP/(TP +FN)), (1)

where TP , TN , FN , and N represent the number of
true positives, true negatives, false negatives, and total
number of instances, respectively.
In this paper, we measure WSS at different points in

the document ranking, considering the TOP-K as posi-
tive and the remaining as negative. For our main results
we fix the recall to 95%, in line with the study by Cohen
et al. [2]. To calculate the WSS metric, we compute
recall for different K values until 95% recall is achieved.
At this point, WSS@95 can be computed as shown in
Equation 2

56

WSS@95 = ((TN + FN)/N)− 0.05. (2)

Note that the number of relevant documents in the
ranking (R) will affect the minimum and maximum val-
ues of the metric. For WSS@95, since we have a fixed
recall of 95%, FN will always be 0.05 × R; N will
be constant; and TN will determine the value of the
ranking in saving work. Low TN/N ratios will pro-
duce negative WSS scores, since this indicates that we
need to go to the bottom of the list to find all relevant
documents, which would be outperformed by a random
sampling.
It is worth explaining that ideally we would want

to a priori approximate the K value that separates pos-
itive and negative instances in the classifier’s output.
This can be a difficult problem, since we cannot be sure
of the total number of relevant documents for a given
query. One way of dealing with this issue would be
to estimate the expected relevant documents by using
training or held-out data as a reference.
Apart from WSS, we also calculated the receiver op-

erating characteristic (ROC) curves and corresponding
area under curve (AUC) values for the produced rank-
ings. ROC curves illustrate the trade-off between the
true positive rate and the false positive rate, providing a
visualisation of the classifier’s performance at different
cutoff points. The AUC score summarises the curve and
the performance of the classifier in a single number, for
easier comparison.
For the final results—since the text classification

module also requires us to use the top documents
for training, for a uniform evaluation over different
training splits—we measured the WSS@95 and AUC
scores over the full collection, by putting the training
documents at the top, and re-ranking the remaining
according to the scores of the classifier. The reason for
this is that the benefits from re-arranging the training
data should not be credited to the classifiers.

5 Experimental Results
We first measure the performance of the existing
boolean queries over MEDLINE. We then evaluate
different retrieval strategies that rely on different
sources of query-words. For our final experiment we
rely on a text classification algorithm for improving the
initial ranked results.

5.1 Boolean Retrieval
Each systematic review contains search strategies
which list all the finalised boolean queries – for
different databases – used to retrieve potential relevant
articles. We extracted Ovid MEDLINE boolean queries
from our selected 17 reviews and re-ran them against
Ovid MEDLINE that indexes articles from 1950 to the
first week of October 2008. We then extracted PMIDs
of the retrieved articles and matched them against the
relevance judgements we created from the reviews as
reported in Table 1. Surprisingly however not all these

(a) Replicated boolean queries

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

first−tier

second−tier

Boolean Query

R
e
c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) TRC ranked queries (TOP-10K)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

first−tier

second−tier

Ranked Query

R
e
c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 1: Recall of replicated boolean queries and
ranked queries based on the relevance judgements re-
ported in the reviews. Note 7 boolean queries (1, 5, 7,
11, 13, 15, 16) are just shown for easier comparison of
the two graphs and they do not represent any data.

queries were in the state of reproducibility and led
to errors when running them in Ovid. Examples of
these errors were missing query lines in the reported
queries, non-matching MeSH headings, and query
lines referring to specific partial results in the query
that made it dependant on the time it has been first
executed. Figure 1 (a) shows recall values of 10
out of 17 queries only, as the remaining were not
replicable. As presented in the figure, in contrast to
our expectation, not all the relevant documents were
retrieved by these queries, with some of them showing
very low recall (query 8 and query 14 had 0.0 and 0.02
recall, respectively, based on the first-tier judgements).
This clearly illustrates the limitations of the present
approach for documenting systematic review strategies
based on boolean queries.

5.2 Ranked Retrieval
Ranked retrieval is the first stage of our architecture, as
explained in Section 3.1, which retrieves an initial set
of documents to feed to the second stage, classification.
We created ranked queries from the 17 systematic

reviews available from AHRQ based on three main in-

57

T TR TRC B U

first−tier

second−tier

RUN

M
A

P

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Figure 2: Retrieval effectiveness of different types of
ranked queries on MEDLINE citations (TOP-10K).

formation components they are built on: title or major
research question (T), other research questions (R), and
inclusion criteria (C). For each of these query types, we
used the exact string that appeared in the correspond-
ing review. We also flattened boolean queries to make
ranked queries by removing metadata indicators such
as .tw. or .pt. (B). Finally, we ran some combinations
of these queries against the MEDLINE collection. In
our experiments, we used Zettair6 search engine with
its default setting for Okapi BM25 ranking scheme.
Figure 2 shows the mean average precision (MAP)

for the five categories of title only (T), title and
research questions (TR), title and research questions
and inclusion criteria (TRC), ranked queries made from
boolean queries (B), and using unique words of C
with T and R (U). All categories of the queries work
poorly, with MAP scores less than 0.1 using each of the
first-tier and second-tier judgements. The third group,
TRC, achieved a slightly better MAP score of 0.0405 in
comparison to others, and we will consider this method
as the baseline for the classification experiments. We
also show recall values for each query in Figure 1
(b) as a comparison to their boolean counterparts
where available. Interestingly, ranked queries are
more effective based on the second-tier judgements,
where only included articles are considered as relevant
(twelve out of seventeen queries had higher recall in
the second-trier level than the first-trier level). Also,
comparing the recall values of the boolean and ranked
queries in the second-trier level, five ranked queries
had higher recall than boolean queries, with boolean
queries winning only for four queries.
Recall values specify a maximum threshold on our

system effectiveness in finding relevant documents.
That is, our classifier can improve the ranking of these
documents in the list, but no new relevant document
that might have been missed in the initial retrieval can
be added to the pool.
Systematic reviews are expected to cover all the

relevant studies and therefore recall is crucial. In order
6http://www.seg.rmit.edu.au/zettair/

0 10 20 30 40 50 60 70 80 90 100

Recall

0

10

20

30

40

Pr
ec
is
io
n

1K
10K
50K
100K
200K

Figure 3: Precision at eleven recall points for different
cutoffs when using queries composed of title, research
questions, and inclusion criteria (TRC). Judgements
were first-tier articles.

to choose an experimentally sound cutoff point in
our ranking list that covers most relevant documents,
we calculated precision at eleven recall points for
the different cutoffs of TOP-1K, TOP-10K, TOP-50K,
and TOP-100K, averaged over 17 queries (Figure 3).
There was little difference between recall values when
more than ten thousand documents were retrieved.
We therefore chose TOP-10K results as input to the
classifier. This number of documents also reflects the
amount of articles that researchers commonly manually
check after running boolean queries, which can be in
the order of tens of thousands.

5.3 Re-ranking via Text Classification
The goal of the re-ranking step is to improve the re-
trieval rankings by moving relevant documents towards
the top of the list. As mentioned above, achieving very
high recall is crucial, and the value of a ranked list
will be dependant on the number of documents required
to reach a given recall (95% in our case), which can
be shown by the metrics WSS@95 and AUC (see Sec-
tion 4.1).
For our classification experimentswe rely on the top

10,000 documents from the text retrieval step, using the
TRC query strategy, which attained the highest recall.
As relevance judgements, we focused on the documents
included in the final reviews (second-tier); the main
reasons being that: (i) they are the ones chosen for the
final review, and (ii) the retrieval step showed that the
recall is proportionally higher for these.
Table 2 shows the WSS results and TOP-K value for

our first experiment relying on the basic feature set (no
MeSH terms), with different amounts of training data.
The TRC column shows WSS@95 without re-ranking;
the average WSS score for these is 16.4%, which would
be the amount of work saved over random sampling of
the documents. The classifier is able to clearly improve
these values for different amounts of training data, ob-
taining the best performance for all but three of the
queries. The results using 10% of data are significantly
improved, according to the paired t-test, and we save

58

Classifier
Baseline 10% 20% 30%

Query WSS K WSS K WSS K WSS K
1 8.9 8608 19.4 7564 9.0 8599 16.9 7812
2 19.4 7562 53.3 4169 44.7 5030 38.4 5660
3 11.0 8398 56.5 3847 56.7 3830 55.8 3925
4 17.9 7710 67.9 2707 41.5 5348 42.4 5259
5 45.1 4986 67.7 2728 67.6 2742 59.4 3558
6 42.1 5288 42.1 5288 42.1 5288 63.2 3179
7 8.7 8631 69.6 2537 54.9 4010 59.8 3517
8 - - - - - - - -
9 59.0 3597 33.0 6195 18.4 7655 13.6 8135
10 1.6 9344 26.6 6835 33.4 6163 31.2 6375
11 2.7 9230 2.2 9281 25.2 6977 -3.0 9799
12 13.4 8165 7.6 8736 5.8 8916 5.0 9003
13 8.7 8628 5.4 8958 0.7 9426 -2.3 9729
14 2.5 9247 -2.3 9731 24.0 7096 16.0 7896
15 4.5 9048 7.7 8728 4.5 9054 2.0 9296
16 -0.1 9506 -0.1 9506 13.7 8133 63.5 3146
17 - - - - - - - -
Avg. 16.4 7863.2 30.5† 6454.0 29.5† 6551.1 30.8 6419.3
Wins 3 6 4 2

Table 2: Comparison of the baseline (TRC) and the two-stage system with classifier using WSS metric with basic
features. K: number of documents that are returned as positive. Wins: number of queries for which a particular
approach attains the best results. †: paired t-test with 95 percent confidence level (over baseline).

more than 30% of the work on average. Notice also
that for queries 8 and 17 there are no results, since the
TRC query-strategy is not able to return any relevant
document.
As the training data gets bigger we can see that the

WSS score remains very similar on average. The main
reason for this is that even if the classifier should get
more accurate with additional training data, the top of
the ranking will be given by TRC, and the pool to re-
rank will be smaller, forcing the classifier to do a better
job to obtain the same WSS score. We can see that the
results for different training splits change depending on
the query, but the averages remain the same. The paired
t-test shows that there are differences between 10% and
20%, but not between 20% and 30%. These figures
illustrate that 10% of training data is enough to benefit
from the text classification system.
We also calculated the more known ROC curves and

corresponding AUC values for this experiment. The
results are given in Table 3, and they show a similar
behaviour, with the 10% classifiers obtaining slightly
better curves than other training splits. In this case
the differences are always significant according to the
t-test.
Our next step was to add MeSH terms as features.

A summary of the WSS@95 and AUC results is given
in Table 4, with the baseline feature results for refer-
ence. We can see that MeSH terms improves the results
when using 20% of the data for training. This indicates
that the classifier improves considerably in ranking the
remaining 80% of data.
The WSS results for each query are shown in Fig-

ure 4, when using MeSH terms. Here, we can see that
there are big differences depending on the query, with
cases where the classifiers make a huge contribution

Query Baseline Classifier
10% 20% 30%

1 69.6 75.9 73.4 74.6
2 85.2 89.7 89.6 88.2
3 89.8 92.3 93.6 93.5
4 86.7 91.2 88.9 87.9
5 90.6 93.1 92.4 91.5
6 66.4 66.4 66.4 74.7
7 68.9 90.8 83.4 79.8
8 - - - -
9 86.6 83.7 77.7 74.4
10 61.3 79.4 75.9 71.3
11 56.2 75.3 74.1 66.3
12 66.3 72.1 72.3 69.6
13 84.9 85.7 86.5 84.9
14 68.2 71.6 80.7 72.6
15 71.2 75.3 74.8 74.3
16 57.5 57.5 67.7 76.1
17 - - - -
Avg. 73.9 80.0‡ 79.8‡ 78.6†

Table 3: Comparison of the baseline (TRC) and two-
stage system that uses classifier based on AUC metric.
†, ‡: paired t-test with 95 and 98 percent confidence
levels respectively (over baseline).

Classifier
Metric Baseline Feats. 10% 20% 30%

WSS 16.4 Base 30.5 29.5 30.8
MeSH 31.5 34.3† 31.2

AUC 73.9 Base 80.0 79.8 78.6
MeSH 80.5‡ 80.6‡ 79.0‡

Table 4: Comparison of average WSS and AUC between
Base features and adding MeSH headings to the Base
ones. †, ‡: paired t-test with 95 and 98 percent confi-
dence levels respectively (MeSH over baseline).

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

baseline

10%

20%

30%

Ranked Query

W
S

S
@

9
5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4: Word saved over sampling (WSS@95) per
query when MeSH terms are used along with text of
articles as classifier training features.

(e.g. queries 7 and 16), and others where the scores go
down (e.g. queries 9, 12 and 13). The results for query 9
are particularly interesting; this is the query that has the
highest baseline, but the performance of the re-ranking
system clearly drops. On the other hand, for query 16
the baseline ranking is as low as random sampling, but
the classifier is able to obtain remarkable results. We
think that there are a number of parameters affecting
the final performance, such as the baseline score or the
number of relevant documents in the collection, which
would give us a better indication of the expected per-
formance per query. Overall, we can see that the re-
ranking approach is beneficial for most queries.

6 Conclusions and Future Work
We addressed the search needs for building systematic
clinical reviews for EBM, an increasingly growing
area that targets the way medical care is provided.
This problem is specifically difficult to solve with
standard search strategies. We illustrated some of
the main problems of the current approach, which
relies on boolean queries: they are time-consuming to
formulate and maintain, they are difficult to execute
without expert knowledge, and they do not provide a
ranking of documents. Furthermore, when replicating
existing search strategies from the AHRQ collection
(publicly available on the web) we found that some are
poorly documented, and those that can be replicated do
not lead to the set of documents that was used in the
construction of the final review.
Thus, we explored the use of ranked queries and

text classification for better retrieval of the relevant
documents. We found that different keyword-search
strategies can reach recall that is comparable and
sometimes better than the costly boolean queries.
Use of ranked queries for systematic reviews was not
explored before in the previous studies. In our next
step we found that these retrieval rankings can be
re-organised using machine learning to significantly

reduce the amount of work required to find most of the
relevant documents. These results show good potential
for the migration from boolean queries towards ranked
systems, which are easier to maintain and provide
means to prioritise the document analysis.
For future work our aim is to integrate our experi-

mental findings into a new tool to aid in the construction
of systematic reviews, focusing on the search and as-
sessment steps. This tool would benefit from the user’s
feedback to dynamically re-rank the documents remain-
ing to be analysed, and reduce the time to generate and
maintain the reviews. Another important issue that we
are exploring is the way to estimate the total number of
documents to be checked to reach the required recall.
We plan to address this issue by using similarity thresh-
olds between the relevant documents already identified
and the remaining candidates. Finally, we also want
to enrich the features of our text classifier by adding
different types of information, such as citation contexts.

Acknowledgements NICTA is funded by the
Australian government as represented by Department
of Broadband, Communication and Digital Economy,
and the Australian Research Council through the ICT
centre of Excellence programme.

References
[1] Y. Aphinyanaphongs, I. Tsamardinos, A. Statnikov,

D. Hardin and C. F. Aliferis. Text categorization models
for high-quality article retrieval in internal medicine.
Journal of the American Medical Informatics Associa-
tion, Volume 12, Number 2, pages 207–216, 2005.

[2] A. M. Cohen, W. R. Hersh, K. Peterson and P. Y. Yen.
Reducing workload in systematic review preparation us-
ing automated citation classification. Journal of the
American Medical Informatics Association, Volume 13,
Number 2, pages 206–219, 2006.

[3] The Cochrane Collaboration. Cochrane handbook for
systematic reviews of interventions, version 5.0.0, http:
//www.cochrane.org/resources/handbook/, 2008.

[4] H. Drucker, C. J. Burges, L. Kaufman, A. Smola and
V. Vapnik. Support vector regression machines. Advances
in Neural Information Processing Systems, Volume 9,
pages 155–161, 1997.

[5] Y. Freund and R.E. Schapire. Large margin classification
using the perceptron algorithm. Machine Learning,
Volume 37, pages 277–296, 1999.

[6] B. Haynes, K. A. McKibbon, N. L. Wilczynski, S. D.
Walter and S. R. Werre. Optimal search strategies for
retrieving scientifically strong studies of treatment from
Medline: analytical survey. British Medical Journal,
Volume 330, Number 7501, pages 1179–1182, 2005.

[7] G. Poulter, D. L. Rubin, R. B. Altman and C. Seoighe.
Mscanner: a classifier for retrieving medline citations.
BMC Bioinformatics, Volume 9, Number 1, 2008.

[8] I. H. Witten and E. Frank. Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
San Francisco, 2nd edition, 2005.

60

Parameter Sensitivity in Rank-Biased Precision

Yuye Zhang Laurence A. F. Park Alistair Moffat
NICTA Victoria Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne
Victoria 3010, Australia

{zhangy, lapark, alistair}@csse.unimelb.edu.au

Abstract Rank-Biased Precision (RBP) is a retrieval
evaluation metric that assigns an effectiveness score to
a ranking by computing a geometricly weighted sum of
document relevance values, with the monotonicly de-
creasing weights in the geometric distribution deter-
mined via a persistence parameter p. Despite exhibit-
ing various advantageous traits over well known exist-
ing measures such as Average Precision, RBP has the
drawback of requiring the designer of any experiment
to choose a value for p. Here we present a method
that allows retrieval systems evaluated using RBP with
different p values to be compared. The proposed ap-
proach involves calculating two critical bounding rel-
evance vectors for the original RBP score, and using
those vectors to calculate the range of possible RBP
scores for any other value of p. Those bounds may
then be sufficient to allow the outright superiority of one
system over the other to be established. In addition, the
process can be modified to handle any RBP residuals
associated with either of the two systems. We believe
the adoption of the comparison process described in
this paper will greatly aid the uptake of RBP in eval-
uation experiments.

Keywords Rank-Biased Precision, Evaluation, Sys-
tem Comparison

1 Introduction
Effectiveness evaluation focuses on allocating scores
to retrieval systems, allowing researchers to compare
pairs of systems, and argue that one or the other
has the better effectiveness. When using a non-
parameterized metric, systems are simply compared
by the effectiveness score computed for each system’s
set of retrieved relevance vectors. However, the task
of comparing systems is complicated when adjustable
effectiveness-scoring parameters are introduced, as it
is difficult (or simply meaningless) to compare systems
evaluated using different parameter values. This
presents a problem for measures where there are no
conventionally agreed values for those parameters, and

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

results in a lack of any clear baselines being established
as the basis for future improvements.
Unfortunately, many popular metrics such as

NDCG [Järvelin and Kekäläinen, 2002] and BPref
[Buckley and Voorhees, 2004] make use of such
parameters, and it is often the case that the parameter
needs to be adjusted to the experimental context or
be chosen based on prior knowledge of the dataset
properties. This problem also extends to metrics
such as Average Precision, for which the depth of the
evaluation is clearly a parameter that must be set by
the experimental designer, and might play a large part
in determining the numeric value of the scores that are
achieved.
Rank-Biased Precision (RBP) [Moffat and Zobel,

2009] is an evaluation measure which assigns relevance
weights based on the geometric distribution for a given
parameter 0 ≤ p < 1 or persistence, where a smaller p
value places greater emphasis on documents that appear
early in the ranking, and a larger p spreads the weight
further down the document ranking, but in both cases
with all documents in the ranking contributing to the
final score.
Despite the merits of RBP, there is no single “best” p

that can be used for experimentation, as p is by its very
nature something that is varied across different types
of experiment. Here we present a method to compare
RBP scores computed using differing p values, based
on the bounding binary relevance vectors obtained by
inverting the RBP score calculation.
Our methodology uses a three step process:

1. For a given p and RBP score, calculate the lexi-
cographically greatest and least relevance vectors
which might have generated that score (at some
floating point precision).

2. Using these two vectors, calculate the range of
possible RBP values for the target p value.

3. Finally, based on the target RBP value, we can
deduce whether one RBP score is outright greater
than the other.

Additionally, this method can be modified to work
for RBP values with non-zero residuals, or known

61

imprecision. Our investigation into these properties
shows that changing p results in interesting behaviors
in RBP based on the source values, and that it is
possible for outright comparisons to be performed on
two RBP scores computed using different parameters.
Our outcomes suggest that RBP can be employed
more extensively in evaluation experiments than it is
currently, with reduced concerns over incomparable
results between researchers.
Section 2 introduces the RBP metric and other re-

lated work in the general research area. Section 3 de-
scribes the method to generate relevance vectors from
an initial RBP score and associated p value, in partic-
ular the process to obtain the lexicographically great-
est and least relevance vectors. Section 4 demonstrates
how to obtain a range of RBP values using these two
vectors and the interpretation needed to form a clear
system comparison. Section 5 presents a modified pro-
cess for handling the presence of RBP residuals. Sec-
tion 6 examines some peculiarities and limitations of
the comparison process. Finally, Section 7 concludes
the paper and discusses possibilities for future investi-
gation.

2 RBP and related metrics
Rank-Biased Precision (RBP) is based on the monoton-
ically decreasing values in a geometric sequence. It has
the form:

RBP(R, p) = (1 − p)
|R|∑
i=1

rip
i−1

where p is a abstraction of the user’s searching per-
sistence, expressed as a parameter between 0 and 1,
R represents the relevance vector to be evaluated, and
ri indicates the relevance of the document ranked in
position i within the ranking [Moffat and Zobel, 2009].
Unlike some other metrics, RBP does not utilize the
global number of relevant documents for the query and
is formulated in such a manner that a relevant docu-
ment at any given rank contributes a set value to the
overall score, meaning that potential contributions from
unjudged documents can also be calculated and incor-
porated as they become available. Consequently, RBP
is always bounded between zero and one, with a score
of one only achievable when the length of an “every
document is relevant” ranking vector approaches infin-
ity.
As an example of how RBP is calculated, suppose

that a user has persistence of p = 0.5, meaning that
there is a 50:50 chance that the user will progress from
one document in the ranking to the next. If a system
returns the relevance vector R = {11010001}, where 1
denotes a relevant document and 0 denotes an irrelevant
document, then the RBP of this system is computed as:
(1− 0.5)× (0.50 + 0.51 + 0.53 + 0.57) = 0.816.
Figure 1 depicts the effect of three different values

of p on the RBP contribution for a set of ranks. As p in-
creases, the contribution from early ranked documents

5 10 15 20

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Rank

C
o

n
tr

ib
u

ti
o

n

p = 0.5

p = 0.8

p = 0.95

Figure 1: Contribution of each rank towards the RBP total for
three values of p. Increasing the value of p shifts the emphasis
to documents further down the ranked list.

decreases, and later ranked documents increase their
weight in the final RBP score. The specific properties of
the geometric sequence imply that it is possible to de-
termine the ranking depth required when evaluating to
a given accuracy for any predetermined value of p. For
example, when p = 0.5 the sum of contributions from
rank 12 onwards is 4.88× 10−4. Therefore, when eval-
uating to a precision of three decimal places (0.001), it
is possible to do so using relevance judgments up to just
rank 11 (and no further), as 4.88× 10−4 rounds to less
than 0.001. We make use of this property later.
Previous studies [Park and Zhang, 2007] suggest

that for web search a p value of 0.8 is an appropriate
value. In practice, values as high as 0.95 are used
in experiments with higher pooling depths such as
TREC [Voorhees and Harman, 2000], matching the
deep evaluations provided by Mean Average Precision
(MAP) and NDCG. Moffat and Zobel [2009] argue that
this flexibility in choosing p works to RBP’s advantage,
allowing it to (mimic as required) the characteristics of
other common evaluation metrics, such as Reciprocal
rank, Precision@10, and so on.
Other recent studies have also examined RBP. Park

and Zhang [2007] describe a method for selecting
p based on session and click-through data from a
large Microsoft query log. Moffat et al. [2007]
investigate methods for reducing the number of
relevance judgments required when performing system
comparisons, and evaluated their methods in the
context of RBP. Webber et al. [2008] describe a
process for standardization using existing experimental
results to modify evaluation metrics to shift reliance
away from collection specific parameters. Compared
to other evaluation metrics, Discounted Cumulative
Gain (DCG) [Järvelin and Kekäläinen, 2002] bears
many similarities to RBP, although overall DCG
scores are unbounded as ranked lists grow longer, and
the approach employed in Normalized Discounted
Cumulative Gain (NDCG) requires prior knowledge
of the relevance data. The BPref metric [Buckley and
Voorhees, 2004] and the Q-measure metric [Sakai,

62

2004] are examples of more complex measures that
make use of query-specific relevance information and
the sequencing of relevant documents within the result
list being evaluated.
Like all other metrics, RBP scores are easily compa-

rable when the systems in question use the same param-
eter values, or supply the original rankings (runs), in
which case scores using new parameters can be calcu-
lated. However, since not all experiments utilize iden-
tical parameter values, and published results typically
only include summary data rather than details of the
runs, alternative methods are required to compare sys-
tems evaluated using different p values.

3 Generating relevance vectors
As mentioned previously, it is possible to compare RBP
scores computed using different p values as long as the
original relevance vector is available. Our key contribu-
tion is the observation that it is possible to reconstruct a
set of relevance vectors which could have given rise to
any given RBP score.
Since the contribution of a relevant document

at each rank is fixed for a given p, we can take a
straightforward constraint-based approach to determine
the values of ranks in the relevance vector. Given a
retrieval system, with RBP score S obtained using
persistence p, our goal of generating relevance vectors
can be formally defined as calculating some set of
relevance vectors R, such that each relevance vector
R = {r1, r2 · · · } ∈ R satisfies the equation:

RBP(R, p) = S .

In our scenario of generating vectors R that satisfy S

using p, we have no knowledge of any ri ∈ R and it is
our goal to determine their values. We now define the
following constraints:

Constraint 1 Given R and p where rj is determined
for 0 < j < i and RBP (R, p) < S, if setting ri =
1 causes the calculated RBP (R, p) to become greater
than S, then either ri = 0, or one of the earlier rj

values is incorrect.

Constraint 2 Given R and p where rj is determined
for 0 < j < i and RBP (R, p) < S, if setting rk = 1
for k > i still results in RBP (R, p) < S, then either
ri = 1, or one of the earlier rj values is incorrect.

An example demonstrates the use of the two constraints
when deriving the required relevance vector. Suppose
that the target score is S = 0.4, that p = 0.8, and
that R = {1 0 0 0 1 ? ? ?}, where ? represents a
ranking with some unknown values. In this configu-
ration, RBP (R, p) = 0.2812. If the options for r6

are then considered, setting it to 1 does not break con-
straint 1, but setting r6 = 0 breaks constraint 2, be-
cause the remaining unknown document judgments can
only contribute at most 0.0943, which is not enough

10−2 10−4 10−8

p = 0.5 8 15 28
p = 0.7 15 28 54
p = 0.8 24 45 86
p = 0.9 51 94 182
p = 0.95 104 194 373
p = 0.99 528 986 1,001

Table 1: Number of significant ranks at given floating point
precision as a function of p.

to allow the target of S = 0.4 to be reached (because
0.2812 + 0.0943 < 0.4). Therefore r6 = 1, giving
R = {1 0 0 0 1 1 ? ?}. The search can then continue.
To formalize this process, let con (i) represent the

contribution for a relevant document at rank i. Then,
assuming binary relevance and some fixed p:

con (i) = p
i−1 × (1− p) ,

and the contributions of all remaining documents from
rank i onwards can be represented as:

rem (i) =
|R|∑

k=i+1

con (k) .

The constraints can now be expressed as:

ri ∈ R =
{

0 if acc (i) + con (i) > S

1 if acc (i) + rem (i) < S

where:

acc (i) =
{

0 if i = 1∑i−1
j=1 rj · con (j) otherwise

In this approach, we evaluate the values of ri se-
quentially by following the constraints, starting at r1.
Technically R can reach lengths up to infinity, but we
bound this value by specifying a precision at which we
stop the calculation. Hence, |R| is simply the rank at
which the rounded value of rem (i) becomes less than
the precision. Table 1 depicts the number of results
which are significant in terms of precision for various
p and precision values.
For cases when neither constraint is satisfied, there

is a choice. To obtain the full set of vectorsR, both pos-
sible values for ri would be made at these choicepoints,
and the search would then continue along both paths.
However, we will take special note of two possible R

vectors with useful properties: the one with the most
relevant documents at the top of the ranking, obtained
by always assigning ri = 1 at choicepoints and denoted
as RG; and the one with the most irrelevant documents
at the top of the ranking, obtained by always assigning
ri = 0 at choicepoints, denoted as RL.
Both RG and RL are useful in that they depict

the extremes of possible relevance combinations,
being respectively the lexicographically greatest and
lexicographically least. For our proposed method
of RBP comparisons, simply making use of these
two vectors is sufficient, meaning there is no need to
generate all ofR.

63

Figure 2: Changes in RBP value for RG and RL vectors for
varying p values. As p increases, greater emphasis is placed
on later ranked documents, pushing up the score assigned to
the RL vector, and decreasing the value assigned to the RG

vector. When p decreases, the converse is true. This figure
illustrate a case in which RL and RG are divergent.

4 Comparing RBP values
The generated relevance vectors then allow calculation
of the (range of) RBP scores that might have arisen if a
different value of p had been used.

4.1 Bounding RBP scores for varying p

For a given initial p and score S, upper and lower limits
on the RBP score can be computed for all other values
of p, using the RL and RG vectors. These two values
represent the extremes that can arise from any other
members of R, and yield the largest variations in RBP
score as p is varied.
Recall that a floating point precision was specified

to limit the length of the relevance vectors, with the
implication that for a fixed precision and RBP score,
a higher p′ value (where p′ > p) requires more ranks to
be fully represented. This creates a undesirable situa-
tion where ri of significant ranks at p′ are unavailable,
meaning we cannot use the RG and RL vectors in their
current state as |R| is too short to fully represent the
RBP score at the required precision.
However, as we are primarily interested in the up-

per and lower bounds for possible RBP values, des-
ignating ri = 1 with RG and ri = 0 with RL for
the extended rank positions in p′ provides the greatest
and least possible values for RBP respectively. When
moving to a lower p value, the number of significant
ranks decreases, meaning that ri = 0 is appropriate for
the extended ranks.
Figure 2 shows a representation of the range of pos-

sible RBP values obtainable from an initial p and S

pairing. Intuitively, the range of possible RBP scores
expands as p increases. All possible values in the range
[0, 1] eventually become obtainable as p asymptotically
approaches 1. That is, as the effect of later ranked
documents is accentuated, the score from theRL vector
increases, and the score from the RG vector decreases.

On the other hand, when the value of p approaches
0, greater emphasis is placed on early ranked docu-
ments, until only the first ranked document is significant
in the RBP computation. Indeed, below p = 0.5 the
first document in the ranking dominates the sum of all
of the other rank positions. This property allows us to
easily predict the behavior of the RG andRL scores for
smaller values of p: as p tends to zero, if r1 = 1 in
RL, both scores converge to 1. Otherwise, if r1 = 0
in RG, both RL and RG scores will converge to 0.
Furthermore, given the initial p and S, we can easily
determine the value r1, as con (1) = (1− p)× p1−1 =
(1 − p) and rem (1) = 1 − con (1) = p. Therefore, if
S ≤ (1−p), r1 must equal 0. Conversely, if S ≥ p, then
r1 must equal 1. Figure 3 depicts this occurrence for
nine different combinations of p and S. Note that one
of the nine combinations in the matrix of possibilities is
infeasible, and has not been plotted.

4.2 System comparison with RBP
We now have a process to handle our experimental sce-
nario: suppose we have two retrieval systems (A & B)
which executed the same query on identical datasets.
The author of system A reported a RBP score of SA

calculated using pA. Similarly, the author of system B
reported a RBP score of SB calculated using pB > pA.
We need to determine, if possible, whether system A
outperforms system B on that query or vice versa, using
one or the other of the two values of p. Using the
methods outlined above, we can accomplish this task
by generating theRG andRL vectors of one system and
comparing the range of possible RBP scores to those of
the other at that system’s p.
Although we have the choice of generating

relevance vectors for either system (and thus attempting
the comparison at either of the two values of p), it is
prudent to use the system with the higher p value, and
compare the range of RBP scores to the system with the
lower p value. This is because moving from a higher p
to a lower p places greater emphasis on contributions
of early ranks, and later ranks are more likely to be
uncalculated due to initial precision specification. The
same effect was noted earlier when recalculating RBP
for higher values of p.
With these considerations in mind, we now have

a complete process for comparing systems evaluated
using RBP with different p values:

1. For evaluation systems A and B, assuming pB >

pA, generate RG and RL using pB and SB at the
required level of accuracy.

2. For p < pB , crop |R| to the significant ranks at the
given level of accuracy. Calculate RBP (RG, p)
and RBP (RL, p).

3. For p > pB , append ri = 1 to RG and ri = 0 to
RL until the significant rank at the given level of
accuracy is reached. Calculate RBP (RG, p) and
RBP (RL, p).

64

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p

R
B

P

Figure 3: Convergence behavior using combinations p and S (RBP) values drawn from {0.2, 0.5, 0.8}. The bottom left corner
shows p = 0.2, S = 0.2, and the top right corner shows p = 0.8, S = 0.8. Intersections occur at (p, S) in each graph,
corresponding to the supplied arguments for generating RG and RL. The full divergent range of RBP scores in [0, 1] becomes
obtainable for values of p tending to 1, when the unspecified tail of the ranking has the power to completely change the score.
Convergence of RG and RL for small values of p can be easily validated with be comparing p and S: both will converge to 1
if S ≥ p or both will converge to zero if S ≤ (1− p). The graph of p = 0.2, S = 0.5 is missing because a score of 0.5 cannot
arise when p = 0.2, as all valid RBP scores must be either greater than 0.8, or less than 0.2. Note that all of these bounds are
based solely on the S and p values. If the actual ranking is available, RBP with a reduced p can always be calculated to at least
the same accuracy as it was using the initial value of p.

65

4. System B outperforms system A at p = pA if and
only if SA < RBP (RL, pA).

5. System A outperforms system B at pA if and only
if SA > RBP (RG, pA).

6. Otherwise, there is no clear outcome as to which
system is superior.

The first two outcomes are fairly straightforward: if
the RBP score of system A fails to reach lowest possible
RBP score of system B, then system A is inferior. The
second outcome is simply the mirrored case. However,
when the RBP of system A lies in the range of system B,
there is no clear evidence of superiority either way: out
of all possible relevance vectors generated from system
B (which fall between the RBP bounds marked out by
system B’s RG and RL), a non-empty subset of those
vectors results in a higher RBP score at pA, while others
result in a lower score.

5 Integrating RBP residuals
Although the proposed method is generally applicable,
retrieval experiments are often run with limited rele-
vance judgments due to resource constraints, meaning
that evaluation with exhaustive relevance judgments is
impossible. In the case of RBP, this uncertainty is han-
dled by summing the contributions of all unjudged doc-
uments to form an error bound, or residual [Moffat and
Zobel, 2009]. The RBP residual (ε) can be described
as:

ε(R, p) = (1− p)
∞∑

i=1

unjudged(i) · pi−1

where unjudged(i) = 1 if and only if ri is unknown.
In this sense, the RBP score S of a ranking is the

lower bound of RBP (if all unjudged documents are
irrelevant), and S + ε gives the upper bound, achieved
if all unjudged documents are relevant. Ideally, both S

and ε, along with the p employed, are reported when
effectiveness evaluation results are being disseminated.

5.1 Relevance vectors with residuals
Residuals present a challenge when reconstructing the
relevance vectors used, in that it is no longer valid to se-
lect ri freely when choicepoints are encountered. This
is because unlike previously discussed, the generated
relevance vectorRmust be able to produceS+ε should
some subset of ri = 0 positions be switched to ri =
1, but still give S if they all remain unaltered. These
modifications apply to both the RG and RL vectors.
Fortunately, we are able to incorporate these condi-

tions into the original calculation process. We still need
to abide by the original constraints so that the relevance
vectors sums to the required S, but also have to inte-
grate additional rules such that RG and RL is capable
of satisfying S + ε which certain positions are altered.
Therefore, we integrate some new rules that affect the
selection of ri when we encounter a choicepoint.

For the RG vector, we want to set ri = 1 at choi-
cepoints as long as the ri = 0 positions (decided or
otherwise) can contribute the equivalent of the residual.
Furthermore, we have to take into account for ranks that
haven’t been decided, some subset of ri that must be
allocated to fulfilling the lower bound S:

ri ∈ RG =

⎧⎨
⎩

0 if acc′(i) + rem (i) <

S − (con (i) + acc (i)) + ε

1 otherwise ,

where:

acc′(i) =
{

0 if i = 1∑i−1
j=1(1− rj) · con (j) otherwise .

For the RL vector, we want to set ri = 0 at choice-
points as long as the remaining contributions can reach
the upper bound S + ε:

ri ∈ RL =
{

1 if acc (i) + rem (i) < S + ε

0 otherwise .

After integration of these rules, both RG and RL fit
the criteria which allows some subset of their ri = 0
judgments to be altered to reach the upper bound of the
RBP score.

5.2 Positions of unjudged ranks
To supplementRG and RL, we determine the positions
at which unjudged documents may occur in these vec-
tors, taking

ri =
{
NA if acc (i) + rem′(i) < ε

0 otherwise ,

where:

rem′(i) =
{

0 if i = 1∑d
k=i+1(1− rk) · con (k) otherwise .

Note that this calculation is only applied on ranks where
ri = 0, since we cannot change positions which have
been previously decided to be relevant. Choicepoints
can also be handled in a similar manner to determine
the possible combinations of unknown judgment ranks,
meaning we can consistently select ri = NA to shift
unjudged documents towards the earlier ranks, or ri =
0 to shift them to later ones.
Using the RG and RL vectors as a base, we now

have four possible vector combinations. However,
because we are most interested in the extremes of
the relevance combinations, we let R′

G represent
the lexicographically greatest vector with unknown
judgments shifted towards the top of the ranking, and
R′

L represent the lexicographically least vector with
unknown judgments shifted towards the bottom of the
ranking.

66

Figure 4: Change in RBP values for relevance vectors when
p is varied. The darker lines indicates the upper and lower
bounds for possible RBP values at any given p. This stylized
figure illustrates the change in RBP bounds; and actual RBP
bounds will vary.

5.3 System comparison with residuals
Using our previous definitions of SA, pA, SB and pB >

pA, we now introduce εA and εB to represent the RBP
residual reported by each system. Following the con-
vention of generating relevance vectors for system B
as it has the higher p value, we now have bounds of
{SB, SB +εB} as the set of possible RBP values at pB .
Firstly, we will deal with range of RBP scores pos-

sible at the lower bound of the initial RBP score. In this
case, ri = NA ranks in both R′

G and R′
L must be 0 for

the score of SB to be obtained. This implies the posi-
tions of the unjudged documents are not of importance,
as only ri = 0 positions were altered in creating R′

G

and R′
L. We can simply calculated the possible RBP

scores using the unaltered RG and RL vectors.
At the upper bound of the initial RBP score, all

unjudged ranks in both R′
G and R′

L must be changed
to 1 for the score of SB + εB to be obtained. We must
now set ri = NA to ri = 1 in both vectors, and plot
these in a similar manner. Figure 4 depicts the RBP
bounds for a non-zero RBP residual.
We can see that in the case of a RBP residual being

present, the upper and lower bounds on the possible
RBP values are dictated by the magnitude of the resid-
ual at the initial p values. For larger values of p, the
range of possible RBP values is dictated by R′

L and
RG, while for smaller values of p it is dictated by RL

and R
′
G. Using these observations, our outcomes for

the experimental scenario can be updated as follows:

1. System B outperforms System A if and only if
(SA + εA) < RBP (R′

L, pA).

2. System A outperforms System B if and only if
SA > RBP (R′

G, pA).

The interpretations for these outcomes are similar
to the situation when no residual is present: one sys-
tem outperforms the other only it’s lowest possible RBP

score at the given p is higher than the highest possible
RBP score for the other system. In the case of overlap,
it is still impossible to determine whether one system is
better due insufficient knowledge about the generated
relevance vectors.

6 Discussion
Although our method for comparing the RBP scores
of different retrieval systems is relatively straightfor-
ward in terms of the processes involved, there remains
a number of inherent characteristics (some intrinsic to
the design of RBP itself) which should be taken into
consideration.
Firstly, the initial process of generating relevance

vectors is applicable for all values of p, although the
number of possible relevance vectors generated varies:

• For p = 0.5, for all ranks con (i) = rem (i) mean-
ing there will always be exactly two vectors gen-
erated for all RBP values with either recurring 0
or 1 at the tail. These are the RG and RL vectors
respectively. The range of possible RBP values as
p is shifted is [0, 1], as shown in Figure 3.

• For p < 0.5, some values of RBP are impossible
to obtain: consider the case when p = 0.2 and
S = 0.5. In this case, con (1) = (1 − 0.2) ×
(0.2)0 = 0.8 and rem (1) = 0.2 (assuming d =
∞), meaning it is impossible to obtain any RBP
score between 0.2 and 0.8, as ri cannot be as-
signed in any manner. In all other cases, there is
a single unique vector. The range of possible RBP
values is [0, p] and [1 − p, 1], with similar (and so
on recursively) gaps within these two ranges.

• For p > 0.5, all possible values of RBP are obtain-
able. At a given level of accuracy, higher values
of p will generate more potential vectors in R as
there is a smaller variation in con (i). The range of
possible RBP values is [0, 1].

Furthermore, because the generation process is
based around determining potential contributions of
individual ranks in the output vector, RBP scores
obtained using non-binary relevance judgments are
incompatible. This is because the additional variable
introduced by the scaled judgments further confounds
the range of choicepoints, and instead of seeking binary
representations using a fractional radix, we are seeking
n-ary ones.
Earlier we mentioned that when ranges of possible

RBP values overlap, no unambiguous conclusion can be
made in terms of relative superiority of systems. How-
ever, in the case when no residual is present in either
system, supposing we have generated all possible rele-
vance vectorsR (instead of just RG and RL), calculat-
ing their values at the target p value will give a discrete
set of possible RBP values instead of a range. Using
basic probability measures it is tempting to determine a
crude percentage chance that either system is superior.

67

Unfortunately, the shortcomings of this approach
outweigh the benefits. The number of calculations
required increases greatly for larger initial values
of p, and the presence of RBP residuals in either
system exacerbates the problem. The computation
may be manageable for small residuals, but the overall
expenditure does not justify the (arguably) limited
usefulness of the information obtained. A simpler
approach would be to calculate the numeric overlap of
the two RBP regions, although this conveys even less
information asR can vary greatly with different values
of p, meaning the probability estimate will be quite
likely to be skewed in some manner.
Finally, despite the fact that it is possible to calcu-

late the range of RBP values at all values of p using
the RG and RL vectors, the knowledge of upper and
lower bounds of RBP for p greater than the original
has limited usefulness. Although it was included in
our illustrations for completeness, the upper and lower
bounds represent extreme cases when the trailing doc-
uments are either all completely relevant or completely
irrelevant. As such, these bounds should be used as
guidelines only, rather than an indication that the com-
parison is possible.

7 Conclusion
We have presented a method comparing two
systems evaluated using the Rank-Biased Precision
effectiveness measure with different values for
parameter p. This is achieved by generating the
lexicographically greatest and least relevance vectors
which can give rise to the original RBP score at the
specified p, and using those two vectors to model
the upper and lower bounds of possible RBP values
at all other values of p. Furthermore, the generation
and modeling process can be modified to handle RBP
residuals, which will almost certainly be present in real
world evaluation experiments.
By utilizing the processes we outlined, it may be

possible for direct conclusions to be drawn regarding
the superiority of one system over another, even though
they have been scored using different values of p. This
is a significant improvement from the current situation
where there is no process to compare systems evaluated
using varying values of p, and may aid in the uptake of
RBP as a standard experimental metric. It is also pos-
sible that, with appropriate amendment, our proposed
method for system comparison can be applied to other
evaluation metrics that have fixed relevance contribu-
tions for each given position in the document ranking.
In terms of possible improvements, currently our

method for performing system comparisons fails to de-
liver a clear outcome when there is an overlap between
the RBP bounds of both systems at the required p value.
It is not clear how this situation can be handled due
to the limited information available when generating
relevance vectors, and finding better approaches to this
problem is a topic currently under investigation.

Finally, to get a sense of how often RBP bounds do
in fact overlap when performing comparisons, it may
be possible to utilize runs from existing TREC datasets
and recalculate RBP scores using different p values.
We can then compare different systems and observe
how often one system is outright superior to the other,
and establish a general idea of the applicability for our
comparison method in its current form.

Acknowledgements This work was supported by the
Australian Research Council. National ICT Australia
(NICTA) is funded by the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian
Research Council.

References
Chris Buckley and Ellen M. Voorhees. Retrieval evaluation
with incomplete information. In Proc. 27th Ann. Int. ACM
SIGIR Conf. on Research and Development in Information
Retrieval, pages 25–32, Sheffield, United Kingdom, 2004.
ACM Press, New York.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-
based evaluation of IR techniques. ACM Transactions on
Information Systems, 20(4):422–446, 2002.

Alistair Moffat and Justin Zobel. Rank-biased precision for
measurement of retrieval effectiveness. ACM Transactions
on Information Systems, January 2009. To appear.

Alistair Moffat, William Webber, and Justin Zobel. Strategic
system comparisons via targeted relevance judgments. In
Proc. 30th Ann. Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 375–382,
Amsterdam, The Netherlands, 2007. ACM Press, New
York.

Laurence A. F. Park and Yuye Zhang. On the distribution of
user persistence for rank-biased precision. In Proc. 12th
Australasian Document Computing Symp., pages 17–24.
School of Computer Science and Information Technology,
RMIT University, Australia, December 2007.

Tetsuya Sakai. Ranking the NTCIR systems based on multi-
grade relevance. In Proc. Asian Information Retrieval
Symp., volume 3411, LNCS, pages 251–262. Springer,
Berlin/Heidelberg, October 2004.

Ellen M. Voorhees and Donna Harman. Overview of the
Ninth Text REtrieval conference (TREC-9). In Proc. 2000
TREC Text Retrieval Conf. National Institute of Standards
and Technology, November 2000. http://trec.nist.

gov/pubs/trec9/papers/overview_9.pdf.

William Webber, Alistair Moffat, and Justin Zobel. Score
standardization for inter-collection comparison of retrieval
systems. In Proc. 31st Ann. Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, pages
51–58, Singapore, July 2008. ACM Press, New York.

68

Querying Linguistic Annotations

Sumukh Ghodke and Steven Bird
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia

{sghodke,sb}@csse.unimelb.edu.au

Abstract Over the past decade, a variety of expres-
sive linguistic query languages have been developed.
The most scalable of these have been implemented on
top of an existing database engine. However, with the
arrival of efficient, wide-coverage parsers, it is feasi-
ble to parse text on a scale that is several orders of
magnitude larger. We show that the existing database
approach will not scale up, and speculate on a new
approach that leverages proximity search in the context
of an IR engine. We also propose a simple syntax for
querying linguistic annotations, avoiding the usability
problems with existing tree query languages.

Keywords Information Retrieval, Natural Language Tech-

niques and Documents, XML Document Standards

1 Introduction
High quality part-of-speech taggers and syntactic

parsers are able to annotate large quantities of English

text [5]. With suitable indexing methods, it should be

possible for users to express queries that are sensitive to

this additional information, and support more focussed

search.

In some cases, the part-of-speech of a word may

disambiguate the primary senses of the word, e.g. wind,

park. A user could easily select the intended POS-

tag using a query format like: wind/N or park/V. In

other cases we want to do a proximity search but need

to constrain the syntax of the intervening material, e.g.

give NP up will find instances of “give up” wrapped

around a noun phrase (NP), and won’t include results

which have other intervening material.

Expecting users to annotate their queries adds a

significant burden, without guaranteeing that the result

will be sufficiently improved to justify the effort.

However, we hypothesise that a specialised query

engine can cluster results from a conventional ad-hoc

query using extra information present in the linguistic

annotations. Exemplars from each cluster could be

presented to the user, together with the annotations

that characterise each cluster. In this way, users are

educated about the relevant linguistic properties and

can start to annotate their own queries.

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

��

��

���

��	

��

� ��� ��� �	�
�� ��� � ��� �����

���

����

���	

��

��� ���� ���

�������������

Figure 1: Syntax Tree

For example, an ad hoc query for documents con-

cerning acquisitions of QANTAS mostly returns doc-

uments concerning acquisitions by QANTAS. The lin-

guistic difference between these two cases is the gram-

matical role of QANTAS relative to the main verb (sub-

ject vs object). If this difference could be discovered, a

user would be able to look through results of the refined

query: "acquire QANTAS/NP-OBJ". Similar analysis

could detect differences in tense and cluster the results

as pertaining to the past or the future.

This paper explores the suitability of existing work

on linguistic tree query as the basis for such a query

engine. The paper is organised as follows. First we give

an overview of existing work on linguistic tree query

(§2) and XML indexing (§3). Our scaling experiments

are presented in §4. Our negative conclusions about

scaling lead to a more speculative discussion (§5) on

the prospects for using an IR engine for performing the

desired query tasks.

2 Linguistic Tree Query
The problem of representing and querying linguistic

annotations has been an active area of research for

several years [3, 7]. It has grown out of work on

curating large databases of annotated text such as

treebanks [10] for use in developing and testing

language technologies. Figure 1 gives an example

of a parsed sentence; it represents the constituent

structure of a sentence, and involves non-terminal

nodes for noun phrases, verb phrases, prepositional

phrases, and so on. Trees also encode relationships

between these constituents, and permit us, amongst

other things, to discover the subject and object noun

phrases corresponding to a particular verb.

69

At least a dozen linguistic tree query languages have

been developed for interrogating treebanks (see [8] for a

survey). One of these languages, called LPath, extends

XPath [4] with extra navigational operators tailored to

the needs of linguistic tree query [2].

The syntax of such languages is arcane, and we

would need to provide a more accessible, high-level

syntax for use by a non-specialised audience. For

instance, a high-level query for the word wind used as

a noun, wind/N, could be automatically translated to

the LPath expression //N[@lex="wind"] (and then

compiled into SQL for execution). The high-level query

"acquire QANTAS/NP-OBJ" could be translated into

the LPath expression //_[@lex="acquire"] ->
_[@lex="QANTAS"]\\NP-OBJ.

A more serious issue is scalability. Treebanks typ-

ically contain millions of words; the Penn Treebank,

for instance, has 4.5 million words [10]. The scale of

data on the Web is several orders of magnitude larger

again. We will explore the scalability of this approach

to querying linguistic annotations using the Penn Tree-

bank, using multiple copies when necessary in order to

simulate larger data sizes.

3 Indexing Hierarchical Data in Databases
Many approaches to storing hierarchical data have

been carefully analysed in recent years. In the past,

relational databases were preferred to specialised semi-

structured database approaches, since the relational

formalisms were more mature and offered superior

performance [14].

However, more recently, several features found

in relational databases have been incorporated into

native XML databases, and indexes have been designed

specifically for XML data. Commercial relational

databases such as Oracle and DB2 now support native

XML storage and retrieval, albeit with widely varying

indexing and query evaluation techniques. Oracle uses

a hybrid approach to store XML within relational tables

[9], while DB2 allows XML data to be stored natively

and builds value and full text indexes over them [12].

Both offer varying levels of XQuery support, and a

primitive XML datatype called XMLType which can

be used across all queries.

Yet another native XML database is the eXist

open source database. It builds three primary indexes

on XML data: the structure, range and full-text

indexes [11]. A structure index is similar to an

inverted index of all nodes and attributes of XML

documents along with their document and node ids.

The node ids help in identifying hierarchical and

sibling relationships without tree traversal. Range

indexes permit comparisons based on typed values

while full-text indexes support queries over sequences

of words or tokens.

Hierarchical data can be decomposed into sets of re-

lations and stored in a relational database. In our exper-

iments, we store all the elements and attributes in a sin-

gle node relation, as it is best suited for a diverse struc-

ture such as that present in annotated linguistic data. A

common feature linking such a relational representation

and the eXist database representation is the evaluation

of path expressions by decomposing them into smaller

components.

Each path expression is treated as sequence of ele-

ments interleaved with operators such as parent, child,

ancestor, or other navigational constructs. These ex-

pressions are evaluated by converting the path sequence

into one or more binary expressions involving a sin-

gle operator. Indexes are used to search for matching

elements on either side of the binary expression and

the resulting sets are reduced using a join based on the

operator. This join operation is termed the structural

join and several optimisations have been proposed to

improve the efficiency of such joins [1].

4 Experiments
In this section we describe the experimental setup used

to evaluate performance of databases for linguistic

queries. We ran the experiments on an Intel core 2

Duo 2.4 GHz processor with 2 GB of RAM, running

openSUSE Linux 11.0. The task of choosing the right

database system and optimising parameter settings for

each of the experiments introduce multiple variables

within the experiment. As our study attempts to

highlight the scalability of particular systems rather

than compare relative performance, we feel that fine

tuned optimisations will not drastically change our

observations on scalability. Instead we focus on

scalability by varying the size of the datasets.

Annotated texts from the Wall Street Journal sec-

tion of the Penn Treebank corpus were used in our ex-

periments. This corpus contains around 50,000 sen-

tences annotated with POS and syntactic tags. In order

to study the variation of performance with the size of

the datasets we either selected a subset of the corpus, or

used multiple copies to simulate larger datasets.

Tests using the relational approach use the Oracle

11g Standard Edition, while the eXist XML database

ver-1.2.2 is used in the native XML approach. The rela-

tional database schema contains a node relation storing

all elements and attributes of the treebank. This schema

is similar to the one used by LPath to query treebanks

and more details can be found in Bird et al.’s work on

LPath [2]. For the XML database approach we store

each sentence as a separate XML document.

The LPath queries used during evaluation are listed

in Table 3. These queries were converted to SQL for

the relational database and into XQuery for the XML

database. Some of these queries include highly selec-

tive nodes, while others search for commonly occurring

terms. Queries 3–6 evaluate the effects of a simple

join on nodes with varying selectivity. Queries 7 and

8 find the occurrences of words within the treebank

irrespective of their POS tag. Other queries include

features like scoping, edge alignment, and negation; all

70

Table 1: Query execution time in Native XML DB
Dataset sizes

500 5k ∼25k ∼50k ∼100k ∼200k

1 .06 .51 .99 1.99 4.59 16.29
2 .01 .12 .60 .73 1.23 3.13

3 .08 .24 .95 1.90 5.80 20.58

4 .08 .11 .86 2.32 7.98 29.81

5 .01 .01 .50 1.01 1.99 2.63

6 .03 .05 .40 .87 7.20 23.62

7 .38 .83 3.98 9.38 33.26 156.60
8 .10 .63 4.17 9.31 29.93 116.36
9 .19 .82 2.16 3.73 31.24 97.72

10 .82 2.36 9.24 17.43 43.28 86.90

11 .17 .54 2.06 4.23 17.48 76.28

12 .64 3.20 14.85 27.99 58.19 160.28
13 .03 .17 1.19 2.43 10.45 37.95

Table 2: Query execution time in Relational DB
Dataset sizes

500 5k ∼25k ∼50k ∼100k ∼200k

1 .10 .32 1.29 2.48 4.80 9.46

2 .07 .07 .08 .07 .07 .11

3 .08 .18 .63 1.20 2.35 4.94

4 .10 .35 1.47 2.83 5.54 12.15
5 .07 .08 .07 .07 .08 .13

6 .07 .09 .16 .24 .40 .13

7 .18 1.07 5.04 9.94 19.93 6.79

8 .07 .07 .08 .07 .07 .12

9 .09 .16 .49 .90 1.65 12.33
10 .08 .14 .41 .76 1.30 2.75

11 .10 .29 1.17 2.15 4.12 12.11
12 .08 .12 .30 .55 .90 2.09

13 .08 .08 .09 .10 .10 .18

features commonly found in linguistic queries. Adja-

cency is another common linguistic query operator and

is represented by queries 12 and 13.

In the Oracle setup, the buffer cache and shared pool

of the database were cleared after every query, but the

first run always took the greatest time to execute. Sub-

sequent queries had stable and repeatable query times.

Table 2 lists the minimum time (in seconds) taken by

each query over a sample of 3 runs. The eXist queries

seemed to perform more uniformly between runs, but

random slowdowns were observed in some cases. Each

value in Table 1 corresponds to the minimum execution

time (in seconds) of 3 consecutive runs of each query,

on the eXist database. The minimum execution time

was chosen instead of an average to avoid including

random slowdown times in the measurement.

One of the main observations in the eXist

experiment was that the rate of increase in execution

time increases with dataset size; especially for larger

datasets. For some queries, when we double the size

of the dataset from 100k to 200k sentences, the time

taken by eXist increases drastically; see the results

for queries 1, 7, 8 and 12 in Table 1, where values of

interest appear in boldface. However, these queries

do not display such a trend in the Oracle setup. On

Table 3: Test Queries
LPath query

1 //NP

2 //PP_LOC_MNR

3 //NP/NP

4 //NP//NP

5 //RRC/PP_TMP

6 //VP/PP_TMP

7 //_[@lex=saw]

8 //_[@lex=rapprochement]

9 //VP{//VB-->NN}

10 //VP//NP$

11 //NP[not(//JJ)]

12 //NP=>NP

13 //ADVP=>ADJP

further inspection, we can see that queries 7 and 8

probably involve simple index lookup. It is unclear

why these queries exhibit such an increase in spite of

using the full-text index in eXist. The poor scaling

behaviour of Query 1 and 12 could be attributed to the

low selectivity of NP.

Queries 6 and 9 are exceptions to the pattern men-

tioned above; their execution times grows by a factor

of 8–10 between 50k and 100k sentence datasets, but

drops to a factor of 3 for larger datasets. A plausible

explanation for this behaviour could be the thrashing

of memory, caused by intermediate object creations.

Query 5 is very similar to query 6 in its construction but

does not exhibit such a phenomenon as it is composed

of high selectivity elements. Overall, the query times in

eXist almost always seem to increase by a factor of 3–5

from 100k to 200k sentences.

A linear increase in time was observed in fewer

Oracle tests when compared to eXist. High selectivity

queries in Oracle displayed almost constant execution

time, indicating optimal use of indexes. However,

query 4, 9 and 11 (in boldface), show an increase in

execution time with the size of the dataset.

5 Searching Linguistic Annotations Using
an IR Engine

From our experiments we observe that the database ap-

proach using structural joins does not scale for queries

containing low selectivity elements. To address this

shortcoming we intend to evaluate systems where paths

are indexed in their entirety and not as a combination of

element pairs. One such approach has been proposed by

Cooper et. al., where paths are inserted into an indexing

data structure called Index Fabric [6]. Paths from the

root to each of the leaf nodes of every tree are treated as

string sequences and are inserted into the data structure.

Patricia tries form a core component of Index Fab-

ric. They are unbalanced structures and not very ef-

ficient for main memory operations. Hence, in Index

Fabric, access to different fragments of a trie is broken

down into multiple layers. Pointers are created at each

node to navigate to deeper tree fragments within lower

71

layers. A multi-layered approach balances the overall

data-structure and results in a constant number of I/O

look-ups for all searches. The Patricia trie is also known

to use an aggressive key compression algorithm, mak-

ing it a scalable architecture for large number of keys

and for paths of varied lengths. The only drawback of

this approach is that it suits queries where the paths are

defined from the root to the leaves or for selected pre-

defined paths, and not for arbitrary partial expressions.

An alternative approach – using a combination of

IR and database systems – has been developed by Park

et al. and is known as XIR. Here, paths are treated as

sentences, and individual elements in a path form the

words within the sentence [13]. They identify paths

as representations of the document schema and hence

are indexed independently from the data, which is con-

sidered to occupy only the leaf nodes. Each unique

path is stored in a path table, while individual elements

comprising the paths are indexed in an inverted index.

Every unique element appears in the inverted index with

a postings list containing information regarding the el-

ement’s occurrence in different paths, an offset indicat-

ing its relative position within the path and the total

length of the path. The data and element information

is stored in a separate table with document and node

identifiers.

The two key contributions of the XIR system

include the concept of using inverted indexes to search

path expressions and the conversion of path queries

into equivalent IR style proximity searches. For

instance, a query such as VP/NP/NNP, which searches

for a singular proper noun phrase (NNP) in the specified

hierarchical relationship with a noun phrase (NP)

and verb phrase (VP), could be converted into an IR

query where the near operator specifies the proximity

relation: VP near(1) NP near(1) NNP. Similarly,

a descendent query VP//NP, could be rewritten as

VP near(∞) NP, indicating that the second element

can appear anywhere after the first element in the

path string. Once the set of paths is known from the

inverted index, a select query on the data and element

information table retrieves the final results.

For linguistic queries, sequential navigation is as

significant as hierarchical navigation. We expect that

by extending the XIR approach, we could create in-

dependent indexes for hierarchical and sequential rela-

tionships in a document. Queries containing hierarchi-

cal and sequential expressions would be converted into

appropriate proximity queries and the resulting nodes

could be reduced by a join operation. This method

would essentially reduce the number and cardinality of

joins, as they would occur only when the expression

changes from path to sequence or vice-versa and not at

every element in the expression.

As a part of ongoing work in this area, we would

also like to compare the performance of such a system

with a pure database implementation containing an in-

dexing algorithm similar to Index Fabric.

Acknowledgements
We gratefully acknowledge the support of Dr A. Ku-

maran and Microsoft Research India.

References
[1] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M.

Patel, Divesh Srivastava and Yuqing Wu. Structural joins: a

primitive for efficient XML query pattern matching. In ICDE
’02: Proceedings of the 18th International Conference on Data
Engineering, page 141, Washington, DC, USA, 2002. IEEE

Computer Society.

[2] Steven Bird, Yi Chen, Susan B. Davidson, Haejoong Lee and

Yifeng Zheng. Designing and evaluating an XPath dialect

for linguistic queries. In ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering, page 52,

Washington, DC, USA, 2006. IEEE Computer Society.

[3] Steven Bird and Jonathan Harrington (editors). Speech Com-
munication: Special Issue on Speech Annotation and Corpus
Tools, Volume 33 (1–2). Elsevier, 2001.

[4] James Clark and Steve DeRose. XML Path language (XPath).
W3C, 1999. http://www.w3.org/TR/xpath.

[5] Stephen Clark and James R. Curran. Wide-coverage efficient

statistical parsing with ccg and log-linear models. Computa-
tional Linguistics, Volume 33, Number 4, pages 493–552, 2007.

[6] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R.

Hjaltason and Moshe Shadmon. A fast index for semistructured

data. In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 341–350, San

Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[7] Stephan Kepser. Finite structure query: a tool for querying

syntactically annotated corpora. In Proceedings of the Tenth
Conference of the European Chapter of the Association for
Computational Linguistics, pages 179–186, 2003.

[8] Catherine Lai and Steven Bird. Querying and updating tree-

banks: A critical survey and requirements analysis. In Proceed-
ings of the Australasian Language Technology Workshop, pages

139–146, 2004.

[9] Zhen Hua Liu, Muralidhar Krishnaprasad and Vikas Arora.

Native XQuery processing in oracle XMLDB. In SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 828–833, New York,

NY, USA, 2005. ACM.

[10] Mitchell P. Marcus, Beatrice Santorini and Mary Ann

Marcinkiewicz. Building a large annotated corpus of English:

The Penn Treebank. Computational Linguistics, Volume 19,

Number 2, pages 313–30, 1993.

[11] Wolfgang Meier. Web, Web-Services, and Database Systems,

Volume Volume 2593/2008, Chapter eXist: an open source

native XML database, pages 169–183. Springer Berlin /

Heidelberg, 2008.

[12] Matthias Nicola and Bert van der Linden. Native XML support

in DB2 universal database. In VLDB ’05: Proceedings of the
31st international conference on Very large data bases, pages

1164–1174. VLDB Endowment, 2005.

[13] Young-Ho Park, Kyu-Young Whang, Byung Suk Lee and

Wook-Shin Han. Efficient evaluation of partial match queries

for XML documents using information retrieval techniques.

Database Systems for Advanced Applications, pages 95–112,

2005.

[14] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang

He, David J. DeWitt and Jeffrey F. Naughton. Relational

databases for querying XML documents: limitations and oppor-

tunities. In VLDB ’99: Proceedings of the 25th International
Conference on Very Large Data Bases, pages 302–314, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

72

Using Collaboratively Constructed Document Collections to Simulate
Real-World Object Comparisons

Karl Grieser,♥ Timothy Baldwin,♠ Fabian Bohnert♣ and Liz Sonenberg♥

♥ DIS
University of Melbourne
VIC 3010 Australia

kgrieser@csse.unimelb.edu.au
l.sonenberg@unimelb.edu.au

♠ CSSE
University of Melbourne
VIC 3010 Australia

tim@csse.unimelb.edu.au

♣ Faculty of IT
Monash University
VIC 3800 Australia

fabianb@csse.monash.edu.au

Abstract While the layout of a museum exhibition is
largely prescribed by the curator, visitors to museums
view connections between exhibits in ways unique to
themselves. With the assistance of a large-scale survey
of museum visitors we identify that the view taken by
museum visitors of a collection of exhibits can be rep-
resented by similarity over documents associated with
each exhibit. We show that even when using a basic
document similarity measure there is a correlation be-
tween document similarity and visitors’ judgements of
relatedness of exhibits aligned to these documents.

Keywords User Studies Involving Documents, Web

Documents, Cognitive Aspects of Documents.

1 Introduction
Recently there has been a move towards providing vis-

itors to museums and Cultural Heritage (CH) spaces

with personalised tours. These tours can be created

explicitly by a visitor prior to entering the collection, or

tailored to a visitor while browsing a collection. In or-

der to create a dynamic tour for a given visitor, there is

the need to (1) model a visitor’s preferences (Zukerman

and Albrecht [14]), and (2) have knowledge about the

content of individual exhibits and connections between

pairs of exhibits (Aroyo et al. [1], Bohnert et al. [3],

Cox et al. [4], and Grieser et al. [7]). The focus of

this paper is on the second of these requirements, using

web documents to represent museum exhibits, and doc-

ument similarity to model similarities between them.

Museum exhibitions are generally designed around

a common theme (e.g., Melbourne or marine life), and

professionally curated so that exhibits are organised in

a coherent fashion relevant to that theme with closely-

related objects in close physical proximity of each other

(e.g., artefacts from the same era or of the same function

are often presented together). The task of tour person-

alisation can be seen as one of matching the interests

of a visitor to the themes represented in the museum.

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

However, visitors to a museum or cultural heritage site

can categorise the museum space in a way particular to

the context of their visit (e.g., preferring to visit more

tactile exhibits to entertain small children, or choosing

to visit all exhibits from a particular location or era,

irrespective of theme). That is, they often have their

own opinions on the degree of relatedness of exhibits,

independent of the themed design of a gallery or exhi-

bition.

While various computational methods have been

developed to identify relationships between documents

or words (e.g., Rubenstein and Goodenough [13]

and Ponzetto and Strübe [12]), there is currently no

standard method of identifying the manner in which

people view the relationships between real-world

objects. The objective of this research is to test the

portability of document-based similarity methods to

the task of estimating museum exhibit relatedness. In

particular, we map each of 41 exhibits from Melbourne

Museum to the most closely associated Wikipedia

article, and perform a simple pairwise cosine similarity

calculation over the weighted document vector for each

document.

We compare our calculated document similarities

against two data sets: (1) real-world relatedness esti-

mates of pairs of exhibits in Melbourne Museum pro-

vided by over 500 museum visitors, and (2) a calcula-

tion of the physical distance between each pairing of

exhibits. In the first instance, we calculate how well

document similarity models the museum visitors’ no-

tions of exhibit relatedness. In the second instance, we

determine how closely our similarity estimates mimics

the physical layout of the museum. We also compare

physical distance with the visitors’ ratings to gauge how

faithful the ratings are to the prescriptive theming of the

museum space.

2 Related Research
Cultural Heritage spaces such as historical sites

and museums are providing greater access to their

collections through mobile computing (e.g., Benelli et

al. [2] and Oppermann et al. [10]) and the web (Aroyo

73

et al. [1]). This has enabled museums to reach wider

audiences and to better communicate the importance

of their collections. The personalisation of content

through digital collections has been a major focus of

many CH projects, and multiple methods have been

used to tailor content or tours to the visitor (Aroyo et

at. [1], Benelli et al. [2], and Cox et al. [4]). Previous

approaches such as the ones in Aroyo et al. [1] and

Cox et al. [4] used the attributes of previously rated

exhibits to identify other exhibits that the visitor may

find interesting. Grieser et al. [7], on the other hand,

used common attributes of exhibits in the current visit

to predict future exhibits the visitor may visit, while

Bohnert et al. [3] used the amount of time a visitor

spent viewing exhibits to infer a visitor’s interests

and pathways. The content-based models explored in

Grieser et al. [7] and the collaborative models proposed

by Bohnert et al. [3] have the advantage of being non-

intrusive, as they do not require explicit exhibit ratings.

However, these techniques suffer from the so-called

cold-start problem in the initial stages of a visit.

The identification of reasons for visitors finding

commonality between exhibits is a key step in

personalising a tour. Previous studies have used

common attributes to align exhibits and identify

similarities (e.g., same artist, same style of jewelery,

as used in Cox et al. [4]). This has lead to the

use of ontological frameworks as a basis for these

comparisons (e.g., The Getty AAT, Iconclass, and the

CIDOC Conceptual Reference Model). For CH sites

such as art galleries where all exhibits have the same

attributes, this method is appropriate. However, for CH

sites that have exhibits of differing backgrounds (e.g.,

natural history museums or national parks) this method

does not adequately account for the diversity of the

exhibit structure. We aim to address this gap by using

an alternative semi-structured data source that is able

to identify relationships between concepts within its

hierarchy.

Estes [5] showed that for concepts that do not have a

common conceptual frame (or physical structure), peo-

ple relate concepts using a process of integration. An

integrative relationship is the interaction that occurs be-

tween two concepts. This is different from attributive

comparison, where concept attributes are compared in

order to determine similarity. This indicates that for

CH sites with diverse collections, highly structured data

sources and ontologies are unable to sufficiently iden-

tify the interactions between exhibits that visitors will

make when considering them. Their key failure is that

they do not simulate the thought process that the aver-

age museum visitor will go through (often an integra-

tive relationship), but rather focus on the organisational

hierarchy designed by the collection’s curator.

For this study, we will use a non-expert data source

that provides relationships between highly different en-

tities, and that is able to represent the information at

a common visitor level: Wikipedia. In recent years,

Wikipedia has been used increasingly in document pro-

cessing tasks, due to its sheer size, multilinguality, and

domain diversity. Extensive conceptual similarity ex-

periments have been performed in other studies, such

as the ones discussed in Gabrilovich and Markovitch [6]

and Milne et al. [9]). Particularly interesting is the cat-

egory hierarchy, as each article must be a member of at

least one category. This hierarchy has been investigated

by Ponzetto and Strübe [11, 12] as a parallel to other

existing hierarchies such as WordNet. In Wikipedia, the

articles are created with the intention of being under-

standable to all users, and even its place in the category

hierarchy is reached through discussion and consensus,

meaning that an article’s content and its organisation is

designed to make sense to the majority of people view-

ing it. This collaboratively constructed social nature of

Wikipedia (Mathes [8]) is the reason for choosing it as

a data source for this research.

3 Museum Visitor Survey
For the purposes of this research, we identified 41

exhibits from Melbourne Museum which could readily

be aligned with Wikipedia documents as per Wikipedia

guidelines1 – some trivially as named entities (e.g.,

Phar Lap), others less convincingly via more general

articles (e.g., gold mining for a diorama of a Ballarat

gold mine). We then designed a web survey drawing

heavily on the psycholinguistic research of Rubenstein

and Goodenough [13] on lexical similarity. In their

research, subjects were presented with a standardised

set of word pairs (presented in random order), and

asked to rate their relatedness on a discrete scale of 0

to 4. In our case, rather than words, we present the

subject with images of two exhibits from Melbourne

Museum, and ask them to rate their relatedness on a

scale of 0 to 4, keeping with the standardised scale

defined by Rubenstein and Goodenough [13]. We also

asked for a justification of the rating.

Subjects were presented with 15 exhibit pairs in ran-

dom order, 3 of which were common to all respondents

and the remaining 12 of which were chosen randomly.

The images were presented adjacent to each other in a

web browser, again in randomised order.

In order to ensure that the ratings were relative to ac-

tual visits to Melbourne Museum, we targeted Museum

Victoria members exclusively, and asked respondents

to indicate how frequently they had visited the museum

in the preceding 12 months (as well as other demo-

graphic and profiling data which is irrelevant to this

current research). We received over 500 responses over

a three-week period, and recorded at least one rating

for every exhibit pair. Of these, we filtered out a small

number where the same relatedness value was given for

all 15 exhibit pairs. We then calculated the mean of the

relatedness values for a given exhibit pair, and use this

as our gold-standard relatedness data.

1http://en.wikipedia.org/wiki/Wikipedia:Neutral_

point_of_view

74

Figure 1: Clustering of exhibits based on the pairwise

relatedness ratings

In order to carry out preliminary analysis of the

ratings from the museum members, we performed

agglomerative hierarchical clustering over the survey

results, and identified distinct groupings of exhibits.

The hierarchy created from the relatedness scores

(translated into dissimilarity ratings by subtracting

from the maximum relatedness value, i.e., 4) is shown

in Figure 1.

Encouragingly, we found that the results followed

broad thematic boundaries, with cluster (a) revolving

around geology, cluster (b) revolving around birds

and trees, and cluster (c) revolving around prehistoric

animals and fossils, for example. However, in

many cases, these clusters do not correspond to the

thematic/physical layout present in the museum. We

will discuss this further in Section 5.

4 Exhibit Comparison
The arrangement of exhibits within a museum exhibi-

tion is often planned around a central theme. This can

be a rather broad theme such as science, or a more spe-

cific one such as documenting the growth of a city over

time. In the more specific case, the arrangement of the

exhibits is key to an exhibition’s interpretation. How-

ever, this interpretation may not be the interpretation

that a visitor considers when identifying relationships

between exhibits.

At this early stage of the research, we calculate sim-

ple cosine similarity between the term vectors of the

Wikipedia documents to estimate the relatedness of a

given pairing of exhibits, weighting terms with a basic

tf·idf model. In addition to the document similarity

model, we explore the hypothesis that physical walking

distance between exhibits is inversely proportional to

their degree of relatedness, i.e., closely-related exhibits

should be in close physical proximity, and less-related

exhibits should be further apart from each other. This

derives simply from the careful theming of the museum

space by curatorial staff. We calculate the physical dis-

tance between exhibits via an SVG image of the mu-

Pairing of methods ρ-value p-value

Human & Physical +0.196 1.5 × 10−8

Human & Document +0.157 6.6 × 10−6

Physical & Document +0.038 2.3 × 10−1

Table 1: Two-tailed Pearson correlation and p-value

between the different methods (Human Judgements,

Physical Distance and Document Similarity)

seum space, mapped onto a graph structure which pre-

serves the physical layout of the museum (i.e., prevent-

ing paths from passing through walls or ceilings).

Identifying which of these measures most closely

aligns with the ratings provided in the survey may

provide an indication of which viewpoint the average

visitor takes: the expert view of the curator, or

the more common interpretation supported by the

socially-constructed documents.

5 Results and Discussion
We evaluated the relative “fit” between each pairing

of human judgements, walking distance and document

similarity via the ρ-value of a two-tailed Pearson corre-

lation test over the corresponding lists of exhibit pair-

ings.2 The results are presented in Table 1.

The highest correlation (at level of statistical signif-

icance, p � 0.01) was obtained for the pairing of phys-

ical distance between exhibits with the human judge-

ments. The most obvious explanation for this result is

that the visitors’ view of exhibits mirrors that intended

by the curators to a certain degree. Preliminary analysis

of the justifications for relatedness from the web survey

supports this observation, with a number of respondents

citing physical proximity as the reason for a higher re-

latedness value.

The second highest correlation was achieved for the

pairing of human judgements and document similari-

ties (again at a level of statistical significance), indicat-

ing that our document similarity model was moderately

successful at capturing exhibit relatedness, despite our

relatively simple approach. Note that as the documents

were sourced from Wikipedia, there is nothing specific

to Melbourne Museum in them, and no indication of

how the exhibits are interpreted in the museum space.

In this sense, the results are highly encouraging.

We get very low correlation between the physical

distance and document similarity (not at a level of sta-

tistical significance). When combined with the above

two results, this indicates that the document similar-

ity model is modelling something removed from the

physical layout of the museum, and yet agrees with

our human subjects. Hence, it appears to be picking

up on cross-gallery relatedness, and complementing the

physical distance model.

2Note that we reverse the sign of the ρ-value in the case that

we are comparing a similarity with a distance (i.e., similarity vs.

dissimilarity).

75

It is unclear at this point exactly what the degree

of influence of the museum layout was on the survey

responses. We intend to carry out further analysis of

the survey data to clarify this point.

That a basic document similarity measure over a

single set of documents could achieve these results

is highly encouraging. Clearly there is much more

that can be done. Areas of future research we are

interested in are analysing cross-article links and

the category hierarchy in Wikipedia, and combining

these with the document similarity model (inspired

in part by the work of Ponzetto and Strübe [11]).

We are also interested in exploring a broader range

of term weighting, feature selection, and similarity

metrics in the document similarity model, as well as

different document sets (including documents from

the Melbourne Museum website). We anticipate that

this will provide a more thorough picture of the way

in which museum visitors conceptualise relationships

between exhibits.

6 Conclusions
When identifying relationships between exhibits within

a museum, previous methods have used highly struc-

tured methods often created by a curator highly famil-

iar with the collection. We have proposed a document

similarity model which makes use of content authored

by non-experts to overcome the curator-centric design

as well as to identify associations between exhibits.

Through comparison of the conceptual design of the

museum in its physical layout (based on exhibit local-

ity within the museum), the content of exhibits (rep-

resented by collaboratively-constructed documents re-

lating to the exhibit content), and the ratings of mu-

seum visitors (obtained through a web survey), we have

shown the following: (1) visitors’ impressions of ex-

hibit relatedness is affected by the physical layout of the

museum, although less than might have been expected;

(2) a basic document similarity model is surprisingly

effective at capturing visitor ratings of exhibit related-

ness, in a manner largely orthogonal to the relatedness

derived from the museum layout.

Acknowledgements Thanks to the staff at Melbourne

Museum for assistance and access to their members, and in

particular Carolyn Meehan for helping with the survey design

and distribution.

References
[1] L Aroyo, R Brussee, L Rutledge, P Gorgels, N Stash

and Y Wang. Personalized museum experience: The

Rijksmuseum use case. In Proceedings of Museums
and the Web, page Online proceedings, San Francisco,

United States, 2007.

[2] G Benelli, A Bianchi, P Marti, D Sennati and E Not.

HIPS: Hyper-interaction within physical space. In

Proceedings of the IEEE International Conference on

Multimedia Computing and Systems, pages 1077–1078,

Florence, Italy, 1999.

[3] F Bohnert, I Zukerman, S Berkovsky, T Baldwin and

L Sonenberg. Using collaborative models to adaptively

predict visitor locations in museums. In Proceedings
of the 5th International Conference on Adaptive Hyper-
media and Adaptive Web-Based Systems, pages 42–51,

Hanover, Germany, 2008.

[4] R Cox, M O’Donnell and J Oberlander. Dynamic

versus static hypermedia in museum education: an

evaluation of ILEX, the intelligent labelling explorer. In

Proceedings of the Artificial Intelligence in Education
Conference, pages 181–188, Le Mans, France, 1999.

[5] Z Estes. A tale of two similarities: comparison and inte-

gration of conceptual combination. Cognitive Science,

Volume 27, Number 6, pages 911–921, 2003.

[6] E Gabrilovich and S Markovitch. Computing seman-

tic relatedness using Wikipedia-based explicit semantic

analysis. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pages 1606–1611,

Hyderabad, India, 2007.

[7] K Grieser, T Baldwin and S Bird. Dynamic path predic-

tion and recommendation in a museum environment. In

Proceedings of the Workshop on Language for Cultural
Hetitage Data, pages 49–56, Prague, Czech Republic,

2007.

[8] A Mathes. Folksonomies - Cooperative
Classification and Communication Through
Shared Metadata. University of Illinois

Urbana-Champaign, http://adammathes.com/

academic/computer-mediated-communication/

folksonomies.pdf, 2004. Unpublished Paper,

Retrieved on 11 Aug, 2008.

[9] D N Milne, I H Witten and D M Nichols. A knowledge-

based search engine powered by Wikipedia. In Pro-
ceedings of the 16th ACM conference on Conference on
Information and Knowledge Management, pages 445–

454, Lisbon, Portugal, 2007.

[10] R Oppermann and M Specht. A context-sensitive

nomadic information system as an exhibition guide. In

Proceedings of the Handheld and Ubiquitous Comput-
ing Second International Symposium, pages 127–142,

Bristol, United Kingdom, 2000.

[11] S P Ponzetto and M Strübe. An API for measuring the

relatedness of words in Wikipedia. In Proceedings of the
ACL Demo and Poster Sessions, pages 49–52, Prague,

Czech Republic, 2007.

[12] S P Ponzetto and M Strübe. Deriving a large scale

taxonomy from Wikipedia. In Proceedings of the 22nd
AAAI Conference on Artificial Intelligence, pages 1440–

1445, Vancouver, Canada, 2007.

[13] H Rubenstein and J B Goodenough. Contextual cor-

relates of synonymy. Communications of the ACM,

Volume 8, Number 10, pages 627–633, 1965.

[14] I Zukerman and D.W. Albrecht. Predictive statistical

models for user modeling. User Modeling and User-
Adapted Interaction, Volume 11, Number 1-2, pages 5–

18, 2001.

76

	all-frontmatter
	turps-frontmatter
	toc

	all-papers.pdf

