
Term-Frequency Surrogates in Text Similarity Computations

Stefan Pohl Alistair Moffat
NICTA Victoria Research Laboratory,

Department of Computer Science and Software Engineering
The University of Melbourne

Victoria 3010, Australia

{spohl,alistair}@csse.unimelb.edu.au

Abstract Inverted indexes on external storage
perform best when accesses are ordered and data is
read sequentially, so that seek times are minimized.
As a consequence, the various items required to
compute Boolean, ranked and phrase queries are
often interleaved in the inverted lists. While suitable
for query types in which all items are required, this
arrangement has the drawback that other query
types – notably pure ranked queries and conjunctive
Boolean queries – do not require access to word
position information, and that component of each
posting must be bypassed when these queries are being
handled. In this paper we show that the term frequency
component of each posting can be completely replaced
by a surrogate that allows skipping of positional
information interleaved in inverted lists, and obtain
significant speedups in ranked query execution without
increasing the index size, and without harming
retrieval effectiveness. We also explore two methods
of reconstituting approximations to the original
term frequencies that can be employed if use of
the surrogates is deemed too risky. Our simple
improvement can thus be used with all ranking
functions that make use of term frequencies.

Keywords Information retrieval, inverted index, skip

pointer, proximity query, efficiency, effectiveness.

1 Introduction
Web search is an expensive operation, on which many

millions of dollars are spent each year in terms of com-

puting and energy costs. Small improvements in search

efficiency can thus yield significant monetary savings,

and are of considerable interest to the web search in-

dustry. Users of web search services are fickle, and if

they do not get their results quickly, no matter if their

query is common or rare, and easy or complex, they

will switch their allegiance to a different product.

A significant fraction of the queries in a typical

query log contain phrases. But even without explicitly

specifying phrases in queries, documents are expected

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, December 8, 2008.
Copyright for this article remains with the authors.

to be ranked higher if keywords occur in close

proximity. To support these options, the inverted index

has to store positional information for every word in

every document. To minimize random access costs,

it is common practise to compactly store them in the

inverted lists along with the document numbers and

document statistics in an interleaved fashion.

To rank documents in response to a query, similarity

measures use heuristic computations based on a range

of document statistics, including the overall document

frequency ft of each term t that appears in the collec-

tion, and the number of times fd,t that term t appears

in document d. In this paper we show that the fd,t

component in each posting in the inverted index can be

replaced by a surrogate that allows skipping of the po-

sitional pointers in query modalities in which they are

not required. This substitution significantly improves

query execution speed, and compared to the alternative

option of inserting an additional per-posting skip into

each pointer, both reduces the cost of storing the index

and also the cost of processing it. Because the surrogate

is highly correlated with term frequency, it has only a

marginal effect on retrieval quality, and in some of our

trials, actually improved it. Nevertheless, we have also

evaluated two approximation methods that allow recon-

stitution of a good approximation to the original term

frequencies, to reduce the risk of effectiveness being

eroded. Our simple improvement can thus be used with

all ranking functions that make use of term frequencies.

2 Background
This section provides background information and

introduces the relevant literature.

2.1 Inverted indexes
The inverted index is the most efficient access structure

for fast document retrieval [22]. It consists of a vo-

cabulary, storing the distinct terms t that occur in the

document collection, including information such as ft,

the number of documents containing this term; and a

set of inverted lists, one per term. Each term t in the

vocabulary links to its inverted list, which stores a set

of postings, each of which in turn reflects the occur-

rence of t in a document d. The term frequency fd,t –

3



the number of times term t occurs in document d – is

usually also stored in each posting, which in simplest

form has the structure

〈d, fd,t〉 .

To evaluate a query, each term’s entry is located in the

vocabulary, which is held either completely in memory,

or with the most frequently used portions in memory.

The corresponding inverted lists are then retrieved, and

depending on the query type, combined in some manner

that yields a set of answers.

Different methods can be employed to evaluate

inverted lists: term-at-a-time, which reduces the

number of random accesses to disk [13]; or document-
or impact-at-a-time [2, 17], which are appropriate

if only the correct (or even an approximate) ranking

of the top k documents is required. In the latter two

approaches the inverted lists do not necessarily have

to be completely processed, and the risk of additional

disk seeks is mitigated by reduced processing costs.

Document-level indexes are typically very compact,

and when suitably compressed require just 5–10% of

the space of the text they index [22].

If more complex queries are to be supported, and

similarity measures employed that are based on the

proximity of query terms, word positional information

must also be stored in the index. A direct extension to

the previous posting layout is to include the positions

p1, . . . , pfd,t
of term t in document d in each posting:

〈d, fd,t, p1, . . . , pfd,t
〉 .

Having the positional information immediately

available allows arbitrary position-based operators

to be implemented, independently of the processing

strategy, and can be also advantageous for snippet

generation [18].

2.2 Compression
The space required by an index can be significantly

reduced through compression. If document identifiers

(respectively, term positions) are sorted in increasing

order, the difference between consecutive entries can

be stored instead. These are commonly referred to as

d-gaps for documents, and p-gaps for positions. Be-

cause most d- and p-gaps are smaller than the original

values, they can be stored in fewer bits, saving space.

The drawback of the gap transformation is that the lists

of document and position numbers need to be accessed

sequentially, and it also makes it more difficult to by-

pass the positional component of each pointer if it is

not required.

Different coding schemes for integer values have

been proposed which are able to greatly reduce index

size [22]. Reduction in the amount of data transferred

from disk can also speed up query processing. The

most effective integer coding schemes are bit-based,

and unless care is taken with their implementation,

add a non-trivial overhead to the computational cost

of query processing. As a tradeoff between efficiency

in space and time, the use of byte-aligned codes has

also been suggested. Byte codes typically outperform

bit-aligned compression schemes in terms of decoding

speed, at the cost of a modest loss in compression

effectiveness [15, 20]. In the simplest of byte code

arrangements, one bit is spent to indicate whether or

not the next byte is also part of the codeword for the

current integer. The other seven bits in each byte store

the actual integer value. More complex byte-aligned

schemes have also been proposed [6, 7, 10] that reduce

the amount of compression “leakage” that occurs

compared to bit-aligned codes. Other fast-decoding

methods (including word-aligned codes [3]) have also

been devised, but typically require that the elements

in the stream being compressed be drawn from the

same distribution, which is not the situation when the

components in each posting are interleaved.

Because not all query modes require access to the

position lists, it is desirable to be able to bypass them

in any given posting, and move immediately to the next

posting. If positions are stored uncompressed, bypass

is readily accomplished by stepping over the next fd,t

stored values. But when the p-gaps are compressed

using a variable length code, the natural ability to for-

wards seek over fd,t values is lost, a combination that

means that if the positional components are not required

during querying, each p-gap must be explicitly counted

off. In the simplest byte code, this can be done by

examining the top bit of each byte looking for stopper

bytes, but even this degree of processing is a cost that is

better avoided.

2.3 Index organization
The posting index layout indicated above is not the only

way to store the inverted lists. An important design de-

cision is the choice of where and how to store position

information. There are three distinct alternatives.

Pointer interleaving This straightforward approach,

suggested above, minimizes random accesses costs, as

the lists for the terms in a query can be sequentially

processed using the term-at-a-time strategy. However,

in the case of pure ranked queries, in which the position

information is not needed, the positions are of necessity

still read from disk and accessed in memory, and have

to be bypassed as every pointer is processed. On the

other hand, the storage requirements are minimal, as

there is no overhead incurred through storage of addi-

tional control information.

Term interleaving The positional information can

also be placed into a separate part of each inverted list,

or possibly even into a separate part of the inverted

index. Extra space will then be required to allow

coordination between the postings in the inverted lists,

and their corresponding positions lists, and the space

required by the overall index might approach that of

4



having separate document-level and word-level indexes

side by side. With term interleaving, performance on

ranked queries should be close to that obtainable using

a strictly document-level index; but phrase queries

may execute more slowly than is the case with pointer

interleaving, because of the need to access additional

disk locations to retrieve positional information.

Phrase indexes If phrase queries are the dominant

operation to be supported, additional indexes for

term-pairs can be built [21]. A document-level

index combined with a word-pair index has good

performance for both ranked and phrase queries, but

is limited to these because no position information is

explicitly stored. Another approach is to index only

common phrases [9].

Augmentations There have been several approaches

described for augmented index organizations, in which

internal structures are added within each inverted list to

accelerate either the search for pointers, or to bypass

blocks of pointers.

In the context of document-level indexes, and

conjunctive Boolean and pure ranked queries, Moffat

and Zobel showed that their “skipping” approach

allows significant time savings to be made [14]. The

key part of their proposal was to enlarge the index, and

to at regular intervals insert into each inverted list a

forward pointer, expressed as a bit or byte offset. To

allow decoding to resume after one or more blocks of

postings have been bypassed, the document number

at the destination of each forward pointer is stored

as a gap relative to the document at the start of the

skip, rather than relative to the immediately preceding

posting. A range of similar techniques have been

proposed for other situations, including when the entire

index is being held in main memory [16].

An upper bound for performance improvements

through skipping can be found if the skipped data is

simply not stored. Of course, doing this in regards to

whole postings results in loss of generality, and means

that some queries might not be properly answerable;

nevertheless, this is what is done by static pruning

methods, and is approximated by approaches that

separate the index into two disjoint parts and seek

to resolve queries using only one part [8]. Similarly,

skipping the position lists in a pointer interleaved index

corresponds (at best) to the use of a document-level

index; and the performance differences between

document- and word-level indexes can be large (for

example, see Hawking [12]). In particular, we use a

document-level index as one of the baselines in our

experiments with the pointer-skipping approach that is

described in Section 3.

Horses for courses Systems employing term-at-a-

time evaluation have the advantage that disk accesses

are sequential, and the number of disk seeks is

minimized. On the other hand, processing the inverted

lists of all terms in parallel in pursuing the document-

at-a-time approach simplifies the implementation of

operators such as word adjacency and proximity. Term-

at-a-time systems can also resolve mandatory phrases

in queries in a pre-processing step, and then only

score the documents that pass the phrase or proximity

constraint. This approach avoids having to store

position information temporarily in the term-at-a-time

accumulators for later use. Either way, if the position

information is not pointer-interleaved in the inverted

lists, additional linkages into the index are necessary.

Our contribution Anh and Moffat discuss the

relationship between index structure and query

modes [5], and conclude that pointer-interleaved

indexes are slower than term-interleaved ones.

However, their experiments did not allow for the

possibility that each set of word positions might be

able to be rapidly bypassed, and it is that opportunity

that we consider in this paper. But rather than simply

add skipping information to the index to allow position

list bypass, we replace the fd,t value (which is the

length of the positions list, counted in pointers) by a

surrogate, namely the length bd,t (counted in bytes)

of the compressed positions list. When a byte code

is used, the value of bd,t is never smaller than fd,t

and is usually greater; nevertheless, our proposal is

that bd,t then be used as a surrogate for fd,t in the

ranking formulation. As we shall see, the result of

this simple substitution is that index size is largely

unaffected; retrieval effectiveness is largely unaffected;

and processing speed for ranked queries (assuming a

pointer interleaved index) is greatly improved.

2.4 Effectiveness-efficiency tradeoffs
Important factors determining the cost of a query evalu-

ation are the size of document collections and the length

and difficulty of queries. Consequently, improvements

are promising to achieve if the number of (full or even

partial) document evaluations can be reduced. A con-

stant theme has thus been methods for trading (a hope-

ful small loss of) retrieval effectiveness for (a hopefully

large gain in) retrieval efficiency.

Heuristic ranking algorithms can be categorized by

their effect on the results, compared to full, exhaustive,

evaluation. The least intrusive optimizations are those

that guarantee to produce identical results, that is, the

same set of k top scoring documents, along with the

same final similarity scores. Documents not in the top

k might be scored differently.

The next fidelity level is a requirement that the top

k documents be correct, and that they be in the cor-

rect score ordering, but that the scores not be faithful

compared with exhaustive evaluation. This level of ap-

proximation is completely acceptable if, for example,

the users of a system see the answer rankings, but not

the scores. In this case even top-ranked documents may

not need to be fully evaluated.

The third category includes methods that guarantee

that the right documents will appear in the top k, but not

5



that they appear in the right order. That is, the split be-

tween “shown to the user” and “not shown to the user”

is correct, but the ranking might not be. Weakening

the fidelity criterion allows additional short-circuiting

of the similarity computation.

The last category consists of algorithms that pro-

duce rankings that are experimentally similar to those

of the underlying exhaustive computation, but cannot

be guaranteed in any way. This kind of approach is also

of interest to system developers, since similarity func-

tions are themselves heuristics, and there is no guaran-

tee that slavishly executing any particular computation

in full detail does in fact give the best possible retrieval

effectiveness. A simpler and more succinct computa-

tion might do just as well in practice.

The restricted accumulator methods that can be

used with term-at-a-time evaluation of ranked queries

are examples of this final approach. The accumulators

store intermediate results for each document, and

represent partially evaluated similarity scores. Moffat

and Zobel [14] proposed methods for limiting the

number of active accumulators, saving on per-query

memory costs, and also allowing the skipping pointers

to gain additional traction. Many similar dynamic

pruning approaches have been developed, including

ones that make use of impact-sorted indexes in which

processed and quantized fd,t are stored, rather than

raw fd,t values. Impact-ordering also allows the

effectiveness-efficiency tradeoff to be controlled on

a per-query basis, and allows query evaluation to be

terminated even before the end of any of the inverted

lists has been reached [4]. Another recent proposal uses

the similarity and dissimilarity between documents to

build document clusters which can be represented in

an index structure [1]. The parallel scoring of clusters

and documents within those leads to speedups, but also

requires new scoring functions.

3 Term-frequency surrogates
Skips that bypass groups of consecutive postings are

useful in ranked querying optimizations that restrict

the number of accumulators, or in conjunctive Boolean

queries. The key operation in this case is to “forward

search” for a specified document number, bypassing all

pointers in which the document identifier is less. In this

case, there is a balance to be struck between short and

long skip groups – too short, and access gets slowed by

the large number of skip pointers that themselves must

be handled, as well as the index becoming enlarged;

and too long, and it is likely that the pointer being

sought appears in the very next block anyway. That

is, any additional control information not only adds to

the space requirement of the index, but also potentially

introduces additional costs during query processing,

if stored interleaved. Each augmentation value in a

pointer-interleaved inverted list has to be read and at

least inspected, even if it is not used to evaluate the

query.

3.1 Skipping positions
In evaluating pure ranked queries, position information

is not used, and it is natural to consider adding a skip to

every pointer so that the positional components can be

bypassed. But positional components are typically very

fine-grained units, and adding another value to every

posting is potentially expensive. Given that the typical

posting in a text index contains around 5–10 values (a

d-gap, an fd,t value, and then 3–8 positions on average),

the overhead might be 10–20% in terms of space.

Hence, instead of adding a skip element to the post-

ing and (hopefully) trading execution time for storage

space, we fold the desired control information (the skip

amount) into the information that must be read and de-

coded anyway (in particular, the fd,t value). With this

small adjustment, skipping of positional lists suddenly

becomes feasible. At risk, of course, is the fidelity of

the similarity scoring process for ranked queries, since

this is why fd,t values are included in the index.

The key observation that allows the substitution to

take place is that these two values are reasonable well

correlated – because of the monotonic relationship

between integer values and the byte length of their

byte-coded representations, lists that contain many

p-gaps are almost always longer than lists that contain

a smaller number of p-gaps. That is, we hypothesize

that ranked querying retrieval effectiveness should

not change dramatically if bd,t, the byte length of the

positions list in document d for term t, is used in place

of fd,t, the actual frequency of t in d. In particular,

we note again that the similarity function is itself a

heuristic, and should be resistant to small changes in

document statistics.

3.2 Correlation
The skip pointer for a position list is just the number

of bytes bd,t it takes to code the fd,t-long position list

of document d and term t, decremented by one if it is

given that at least one position must appear in every

posting. The compressed position list length in bytes

using a byte code is at least as large as the term fre-

quency, because at least one byte is necessary for every

coded value. Perfect correlation would be achieved if

each position gap could be coded in exactly one byte,

which might in fact hold in domains with very short

documents (containing ≤ 128 indexed words). Fig-

ure 1 illustrates the relationship between fd,t and bd,t,

and shows the least and greatest fd,t value associated

with each bd,t value over the approximately six billion

postings present in a full inverted index for the 426 GB

TREC gov2 collection. The strength of the relationship

is clear.

3.3 Space overhead
The number of bytes needed to store an integer using

the simple byte code is a monotonic function of its

value, and because bd,t ≥ fd,t, storing the surrogate

instead of term frequency gives rise to a slight increase

6



Surrogate (bytes)

T
er

m
−

fr
eq

ue
nc

y

1 101 102 103 104 105

1

101

102

103

104

105

Figure 1: Term-frequency fd,t as a function of compressed

byte length bd,t, when positional p-gap lists are stored using

the simple byte coder. The upper and lower lines record the

extremes measured on the TREC gov2 collection. Except for

relatively short lists, the two are very closely correlated.

System
Space

GB %

Base 44.418 100.0

Full skips 50.174 113.0

Part skips, fd,t > 10 44.673 100.6

Surrogate skips 44.421 100.0

Table 1: Space requirements of different word-level index

arrangements for the gov2 collection. Row “Part skips,

fd,t > 10” provides for retention of the fd,t value included

in rows “Base” and “Full skips”, but adds skip information

only when there are more than ten p-gaps in the position list.

Row “Surrogate skips” replaces the fd,t values by bd,t values.

in index size. Table 1 shows space overheads for

different alternative indexes relative to storing term

frequency alone for the gov2 collection described in

more detail in Section 4.2, including for a compromise

arrangement that adds positional skip information only

when there are more than ten p-gaps to be bypassed.

Use of full positional skips adds 13% to the index,

whereas storage of bd,t in place of fd,t translates into

an increase in index size of an inconsequential 3 MB

over a 44 GB index.

3.4 Reconstructing frequencies
Most similarity functions are based on fd,t in some way.

To facilitate the incorporation of our surrogate with dif-

ferent similarity functions in a transparent manner, it is

important to find ways to reconstitute original term fre-

quencies. This way, the surrogate can be plugged into

any search engine and is independent of the similarity

metric being used.

One simple arrangement is for a lookup table to be

employed, in which for each posting, a combination of

context variable settings (such as Ft, the overall collec-

tion frequency of the term; ft, the document frequency

Surrogate (bytes)

f d
,t

b d
,t

1 101 102 103 104 105

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2: Average observed ratio fd,t/bd,t as a function of the

compressed byte length bd,t, for the TREC gov2 collection.

of the term; and bd,t) is mapped to the average term fre-

quency observed for that combination of conditioning

values. This table can then be used to convert a given

bd,t value, in a given context, back to an estimated fd,t

that can be used in the similarity computation.

The two most interesting variables in search engines

are the document-frequency ft, indicating the number

of documents in which a term occurs, and the correlated

term frequency surrogate itself.

It turns out (based on experiments not reported

here) that the term-document frequency ft has a very

low correlation with the ratio fd,t/bd,t, and the best

single predictor of fd,t is bd,t alone, with no other

context information. Calculating the average value

of fd,t/bd,t for each distinct bd,t value yields the

relationship plotted in Figure 2. As expected, bd,t = 1
uniquely indicates fd,t = 1, and for large byte-lengths

(bd,t > 3,000), strongly indicates fd,t = bd,t. Between

these two extremes, a small table serves to capture the

observed average relationship.

An even more compact representation is to derive

a formula to reconstitute term frequencies. As can be

seen from the mid-section of Figure 2, a logarithmic

function is a good fit for the indicated interval, and

can be pre-calculated at indexing time. Then, during

query evaluation, either the direct mapping or the for-

mula is employed, depending on the value of bd,t. The

dashed line fitted to Figure 2 shows the relationship

fd,t ≈ bd,t(0.5 + (1/7) log10 bd,t).
Finally, note that – with a relatively small amount of

computation – exact fd,t frequencies are still available

if they are required. All that is necessary is that the

next bd,t bytes be processed to count (in the case of the

simple byte code and the (S, C)-byte code) the number

of stopper bytes. This option could be employed con-

ditionally when exact reproduction of a similarity for-

mula is required. For example, the correct ordering of

the top k ranked documents generated by the surrogate

approach might then be fully scored, to place them into

final presentation order.

7



4 Experimental results
We adapted version 0.9.3 of the freely available

research search engine zettair.1 To measure

the impact of using fd,t surrogates, we performed

experiments in terms of both efficiency and

effectiveness.

4.1 Experimental arrangement
The TREC gov2 collection is currently the biggest

available research dataset, and was the main resource

used in the efficiency experiments. It consists of more

than 25 million documents and 426 GB of data, and

represents a large portion of the available (crawlable)

.gov part of the web, as of early 2004. A word-level

byte coded index for gov2 occupies 44 GB, and

contains more than 6 billion postings.

We used the first 1,000 queries of the query log pro-

vided for the efficiency task of the TREC 2006 Terabyte

Track. The queries are a mixture of different length

ranked queries and do not contain phrases. This is not

an issue, because the use of a surrogate does not af-

fect query execution times for phrase queries. We per-

formed neither stemming nor stopping of the index or

queries. Timings are for production of a ranking of

the top 20 result documents, without lookup of docu-

ments or generation of snippets, using a Linux server

running Ubuntu 7.10 and kernel version 2.6.22, with

dual quad-core Xeon E5345, 2.33 GHz, 64-bit proces-

sors and 4 GB of main-memory. The machine was oth-

erwise under light load during experiments and memory

was flushed between the runs for different systems and

data sizes.

4.2 Efficiency
To measure the extent to which skipping position

lists speeds up ranked query processing, we measured

timings for the two limiting cases: when all of

the inverted lists for each query have to be fetched

from disk; and when all of the necessary data is

readily available in main memory as a result of a

recent execution of the same query. The first case

is representative for search in large collections that

do not fit into memory, while the latter measures the

improvement for in-memory search. A real-world

search engine under steady load will have performance

somewhere between these extremes, because the index

data for at least some of the terms in some of the

queries is likely to be available in main memory via

standard caching mechanisms.

To achieve these measurements, we executed the

query stream with each query immediately re-evaluated

after its first evaluation, and kept separate records of

the two execution times. This way, the second query is

likely to be executed without accesses to disk, because

the index data required will probably be served from

the disk-cache managed by the operating system. We

1http://www.seg.rmit.edu.au/zettair/

Index size (billion postings)

T
im

e 
(s

ec
on

ds
)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

Baseline
Surrogate
Document−level index

Figure 3: Average per query execution time of the first

1,000 efficiency queries of the TREC 2006 Terabyte Track.

The upper and lower ranges for each system and index size

show the cost of executing that query with and without disk

accesses.

measured timings for the same set of queries over a

range of collection sizes, with random sampling from

the whole of gov2 used to form the sub-collections.

Figure 3 gives the results of these experiments,

where the vertical axis denotes average query time (in

seconds), and the horizontal axis shows the size of the

index, measured in pointers. Three different systems

were tested: the original zettair word-position

index, with pointer-interleaved positional lists; a

modified zettair in which fd,t is replaced in each

pointer by bd,t, and all (pointer interleaved) positional

lists are bypassed during ranked query execution;

and a document-level index in which no positional

information is stored at all.

The word-level index using the surrogate is demon-

strably faster than the original, and when disk access

costs are also factored out, is close to the execution

times of the much smaller document-level index. That

is, the in-memory case appears to be CPU-bound and

exhibits a linear growth in cost with increasing index

size; on the other hand, the two upper limits show a

distinctive curve as the index size grows beyond 40 GB,

and it becomes harder for the operating system to ex-

ploit inter-query caching effects.

Other experiments not included here have shown

that stopping the queries leads to much smaller exe-

cution times, but that the surrogate system keeps its

advantage over the baseline; and that executing queries

a third (or even fourth) time always leads to timings

consistent with the second execution.

4.3 Effectiveness
To see how the use of surrogate fd,t values affected

the quality of ranked retrieval, we compared four ver-

sions of zettair over three different sets of TREC

topics and data: Topics 701–750 on the gov2 collec-

tion; Topics 401–450 on the wt2g collection; and Top-

ics 451–500 on wt10g. The title of the topic was always

8



System
TREC gov2 TREC wt2g TREC wt10g

MAP σ MAP σ MAP σ

Baseline 0.237† 0.184 0.294 0.219 0.203 0.220

Surrogate 0.250∗ 0.182 0.294 0.214 0.199 0.215

Surrogate bd,t 0.243∗† 0.184 0.299 0.212 0.197 0.213

Surrogate Formula 0.243∗† 0.184 0.298 0.214 0.198 0.214

Table 2: Effectiveness comparison using TREC topics 701–850 on the gov2 collection; topics 401–450 on the wt2g collection;

and topics 451–500 on the wt10g collection. The MAP values were tested for significance at the 0.05 level, with ∗ denoting

significant relative to the Baseline, and † denoting significant relative to Surrogate.

taken as the query. We compared the performance of

the unmodified baseline zettair system with our plain

surrogate that uses bd,t instead of fd,t; with a version

that computed an approximate f ′
d,t using a lookup array

indexed by bd,t, as depicted by the plotted line in Fig-

ure 2; and with a version that computed an approximate

f ′′
d,t using a formula (but still implemented as a lookup

table indexed by bd,t), as depicted by the dashed fitted

line in Figure 2.

Retrieval effectiveness was quantified using

Mean Average Precision (MAP) and the standard

TREC methodology, which measures MAP on the

first 1,000 returned documents, and assumes that

unjudged documents are irrelevant. We then performed

pairwise t-tests at the 0.05 level to gauge significance.

Within zettair we used the default Dirichlet-

smoothed language modeling similarity function (with

μ = 1,500) that has been found to perform best across

these datasets [11].

As can be seen from the results shown in Table 2,

the influence of the surrogate is mixed, but always

small. On the gov2 collection, use of surrogates gave

rise to a significant gain in measured effectiveness,

and the two reconstitution approaches then shifted

effectiveness back towards that of the baseline

zettair. On the other hand, on both wt2g and wt10g,

no significant differences in MAP were recorded,

perhaps partly because of the smaller number of

topics in these two collections, but primarily because

surrogates just didn’t seem to make much of a

difference.

Figure 4 shows, for the gov2 collection and Topics

701–850, the effect of replacing fd,t by bd,t on a topic

by topic basis, and confirms that the use of surrogates

perturbs almost all MAP scores up or down by a small

amount, rather than create any large shifts, or move

them all consistently in the same direction.

Rather than converting pairs of rankings to

effectiveness scores and then comparing the scores,

it is also possible to directly compare the relative

fidelity of the two rankings, in terms of whether

they retrieve the same documents in the same order,

regardless of relevance. The Rank-Biased Overlap
(RBO) computation of Webber et al. [19] provides

a way of calculating the difference between two

MAP, using fd,t

M
A

P
, u

si
ng

 b
d,

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4: Surrogate versus Baseline, with MAP scores for

Topics 701–850 using the bd,t-based computation plotted as

a function of the MAP scores attained using the original fd,t-

based computation.

System
RBO

p = 0.9 p = 0.99

Baseline 1.000 1.000

Surrogate 0.768 0.796

Surrogate bd,t 0.782 0.839

Surrogate Formula 0.779 0.838

Table 3: Rank-biased overlap (RBO) for two different values

of p using TREC Topics 701–850 on the gov2 collection.

indefinite rankings, with a bias towards early positions

in the ranking, and the ability to deal with rankings

over disjoint sets of objects. A parameter 0 ≤ p < 1
controls the extent of the top-weightedness of the

comparison, with p interpreted as being the persistence
of a user who is side-by-side comparing overlap

between the two rankings, and steps from rank r to

rank r + 1 with probability p. A useful property of the

RBO formulation is that the influence of the (unranked)

tail sections of the lists is bounded, and the RBO score

for any pair of rankings is a range that can be calculated

without looking at all documents.

Table 3 lists RBO scores for the gov2 collection at

two different values of p. Broadly speaking, p = 0.9

9



places the bulk of the emphasis on the top ten docu-

ments in the ranking, and an RBO of 0.8 suggests that

around eight of the top-10 determined by the Baseline

computation appear in the same top-10 positions as in

the Surrogate one. Similarly, p = 0.99 spreads the

emphasis to depth 100 and beyond, and a score of 0.8
suggests that around 80% of the elements are in, or not

too far from, their original rank positions. Use of RBO

in this experiment neatly indicates the quality of the

reconstitution methods – both give RBO scores higher

than the plain Surrogate one.

5 Conclusion
Interleaving position information in inverted indexes al-

lows processing of queries with only one disk seek per

term in term-at-a-time systems, and reduces the number

of parallel pointers required in document- and score-at-

a-time systems. We proposed a term frequency surro-

gate as a way of speeding up query processing in such

indexes, without adding to the space required by the

index. We have shown that the length of the compressed

p-gaps is highly correlated with term frequency, and

allows the use of bd,t instead of fd,t in similarity com-

putations. We also used approximation functions of dif-

fering quality and efficiency to reconstitute the original

term frequencies. The surrogate method is demonstra-

bly faster than the baseline approach, and approaches

the speed on a document-level index for ranked queries.

Effectiveness is largely unchanged by the substitution.

Acknowledgements Justin Zobel took part in a number of

fruitful discussions, and William Webber provided the RBO

implementation. National ICT Australia (NICTA) is funded

by the Australian Government’s Backing Australia’s Ability

initiative, in part through the Australian Research Council.

References
[1] I. S. Altingovde, E. Demir, F. Can and Ö. Ulusoy. Incremen-

tal cluster-based retrieval using compressed cluster-skipping

inverted files. ACM Trans. Information Systems, Volume 26,

Number 3, pages 1–36, 2008.

[2] V. N. Anh, O. de Kretser and A. Moffat. Vector-space ranking

with effective early termination. In Proc. 24th Ann. Int.
ACM SIGIR Conf. Research and Development in Information
Retrieval, pages 35–42, New Orleans, Louisiana, United States,

2001. ACM.

[3] V. N. Anh and A. Moffat. Improved word-aligned binary

compression for text indexing. IEEE Trans. Knowledge and
Data Engineering, Volume 18, Number 6, pages 857–861, June

2006.

[4] V. N. Anh and A. Moffat. Pruned query evaluation using pre-

computed impacts. In Proc. 29th Ann. Int. ACM SIGIR Conf.
Research and Development in Information Retrieval, pages

372–379, Seattle, Washington, USA, 2006. ACM.

[5] V. N. Anh and A. Moffat. Structured index organizations for

high-throughput text querying. In Proc. String Processing and
Information Retrieval Symposium, pages 304–315, Glasgow,

Scotland, October 2006. LNCS 4209, Springer.

[6] N. R. Brisaboa, A. Fariña, G. Navarro and M. F. Esteller.

(S, C)-dense coding: An optimized compression code for

natural language text databases. In Proc. String Processing and
Information Retrieval Symposium, pages 122–136, Manaus,

Brazil, October 2003. LNCS Volume 2857.

[7] N. R. Brisaboa, A. Fariña, G. Navarro and J. R. Paramá. Simple,

fast, and efficient natural language adaptive compression. In

Proc. String Processing and Information Retrieval Symposium,

pages 230–241, Padova, Italy, October 2004. LNCS Volume

3246.

[8] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer and J. Y.

Zien. Efficient query evaluation using a two-level retrieval

process. In Proc. 2003 ACM CIKM Int. Conf. Information
and Knowledge Management, pages 426–434, New Orleans,

Louisiana, November 2005. ACM Press, New York.

[9] M. Chang and C. K. Poon. Efficient phrase querying with

common phrase index. Information Processing & Management,
Volume 44, Number 2, pages 756–769, 2008.

[10] J. S. Culpepper and A. Moffat. Enhanced byte codes with

restricted prefix properties. In Proc. String Processing and
Information Retrieval Symposium, pages 1–12, Buenos Aires,

November 2005. LNCS Volume 3772.

[11] S. Garcia, N. Lester, F. Scholer and M. Shokouhi. RMIT

University at TREC 2006: Terabyte track. In Proc. 15th
Text REtrieval Conference (TREC), Gaithersburg, MD, 2007.

National Institute of Standards and Technology.

[12] D. Hawking. Efficiency/effectiveness trade-offs in query

processing (from theory into practice workshop, 1998 SIGIR

conf.). SIGIR Forum, Volume 32, Number 2, pages 16–22,

1998.

[13] M. Kaszkiel, J. Zobel and R. Sacks-Davis. Efficient passage

ranking for document databases. ACM Trans. Information
Systems, Volume 17, Number 4, pages 406–439, 1999.

[14] A. Moffat and J. Zobel. Self-indexing inverted files for fast

text retrieval. ACM Trans. Information Systems, Volume 14,

Number 4, pages 349–379, 1996.

[15] F. Scholer, H. E. Williams, J. Yiannis and J. Zobel. Compres-

sion of inverted indexes for fast query evaluation. In Proc.
25th Ann. Int. ACM SIGIR Conf. Research and Development in
Information Retrieval, pages 222–229, Tampere, Finland, 2002.

ACM.

[16] T. Strohman and W. B. Croft. Efficient document retrieval

in main memory. In C. L. A. Clarke, N. Fuhr, N. Kando,

W. Kraaij and A. P. de Vries (editors), Proc. 30th Ann. Int.
ACM SIGIR Conf. Research and Development in Information
Retrieval, pages 175–182, Amsterdam, The Netherlands, July

2007. ACM Press, New York.

[17] T. Strohman, H. Turtle and W. B. Croft. Optimization strategies

for complex queries. In Proc. 28th Ann. Int. ACM SIGIR Conf.
Research and Development in Information Retrieval, pages

219–225, Salvador, Brazil, 2005. ACM.

[18] A. Turpin, Y. Tsegay, D. Hawking and H. E. Williams.

Fast generation of result snippets in web search. In Proc.
30th Ann. Int. ACM SIGIR Conf. Research and Development
in Information Retrieval, pages 127–134, Amsterdam, The

Netherlands, 2007. ACM.

[19] W. Webber, A. Moffat and J. Zobel. A similarity measure for

indefinite rankings. Manuscript, November 2008.

[20] H. E. Williams and J. Zobel. Compressing integers for fast file

access. Computer Journal, Volume 42, pages 193–201, 1999.

[21] H. E. Williams, J. Zobel and D. Bahle. Fast phrase querying

with combined indexes. ACM Trans. Information Systems,

Volume 22, Number 4, pages 573–594, 2004.

[22] I. H. Witten, A. Moffat and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan

Kaufmann, second edition, May 1999.

10




