
MetaView: Dynamic metadata based views of user files

James Bunton

School of IT
The University of Sydney

NSW 2120 Australia

jamesbunton@fastmail.fm

Judy Kay

School of IT
The University of Sydney

NSW 2120 Australia

judy@it.usyd.edu.au

Bob Kummerfeld

School of IT
The University of Sydney

NSW 2120 Australia

bob@it.usyd.edu.au

Abstract Hierarchical file systems are the most com-

mon way of organising large collections of documents.

However, there are several desirable features they do

lack. These include: good support for placing files in

multiple locations; dynamic views on the users’ data;

and explicit ordering of files. This paper introduces

MetaView, a new approach to enhancing file systems

so that they can present users with a fluid and dynamic

view of their files based on metadata. MetaView allows

users to describe how they wish to view their files by

specifying an organisational structure based on a meta-

data path. Experiments indicate that this approach is

viable for collections of up to several thousand files in

size, enabling flexible organisation of substantial parts

of a user’s file system.

Keywords Document Management, Metadata, Non-

hierarchical file system.

1 Introduction

File system organisation is a very important area of

computing. Millions of people use computers daily to

store critical, often irreplaceable data. This includes

text, spreadsheets, photos, videos, music and many

other types of documents. Most of this data is stored as

ordinary files in a traditional file system.

The file systems provided by the commonly used

desktop operating systems 1 are implementations of the

hierarchical model. From a conceptual perspective, this

is essentially the same model used in the 1969 version

of Unix [17]. In a hierarchical file system, users can

create folders and subfolders to categorise their files,

with an arbitrary level of nesting. This structure can

be browsed to locate existing files and create new ones.

Once a file is located, applications can read from and

write to it.

There are some well known limitations with this

system which MetaView aims to address. One of these

is that operating systems have a deep model that means

each file may only be saved in one location, even if it

logically belongs under two folders for the purposes of

1Linux, Mac OS and Windows.

Proceedings of the 13th Australasian Document Comput-

ing Symposium, Hobart, Australia, 8 December 2008.

Copyright for this article remains with the authors.

categorisation that suit particular user tasks. Addition-

ally the burden of organising files is placed on the user;

switching to a different categorising scheme can require

much tedious, manual effort to move files around.

Consider the example where a user has a collection

of music which comes with extensive metadata. The

user may wish to organise this music by genre, artist

and then title. Many songs fall under multiple genres.

However, there is no well supported, easy mechanism

enabling the user to express this in existing hierarchical

file systems. The operating system provides poor sup-

port for the case where a user organises files initially

in one structure, say artist, but then later decides they

would like to switch to viewing their music files by

genre and then title. The larger the collection of files,

the more onerous this task becomes.

While most operating systems support links as

a method of extending the hierarchical model, these

have several problems. Firstly, there are so many

different kinds: Windows shortcuts, Unix symlinks and

hardlinks as well as Mac OS aliases. Each of these has

different semantics with positive and negative tradeoffs

and none of them meets both the goals described above

of allowing files to be organised automatically for users

and seamlessly saving files allowing a file to exist in

multiple locations.

MetaView’s approach is to provide users with a

mechanism to specify the structure of a “view” in

which they want their files to appear. A user may

tell the system to make use of metadata to display

all of their music in a format such as: pop/The
Beatles/Yellow Submarine.mp3 where the genre

is first, then the artist, followed by the title. The user

could later choose any other organisation structure

that suits their needs simply by creating or updating

a “view”. The same user may occasionally wish to

browse by artist, then genre, so their music would

appear in this format: The Beatles/pop/Yellow
Submarine.mp3. This applies equally for any types

of files, including collections of completely different

file types, for which automatically collected or

user-specified metadata is available.

Importantly, MetaView allows any existing applica-

tion to use the standard open/close/read/write file API

to access document, making use of metadata as in the

examples above. This means the applications can op-

11



erate consistently with the user’s mental model at the

same time as allowing developers to use the existing

well-known and understood tools for interacting with

the file system.

The ultimate vision is that rather than specifying a

location on disk when saving a file, users would have

the option to tag the file with metadata, or simply save

it. The system will collect the optional user-specified

metadata, as well as automatically extracted metadata

and use this to display the file in any appropriate views

which the user defines. This relieves users of the burden

of organising their files manually, but still allows for the

familiar and powerful browsing interface. MetaView

currently implements the “view” part of this interface;

changes would be required to the operating system’s

save-dialogue API in order to support this alternate sav-

ing behaviour in graphical applications.

2 Related Work

There have been several studies of how users work with

their personal data, such as [4, 18, 5, 16, 12]. These

point to some of the limitations in current systems caus-

ing difficulties for users in organising documents within

multiple locations in file hierarchies as well as the lack

of support for the user to define an arbitrary, custom or-

dering of files within a directory. Reflecting the recog-

nition of the limitation of the prevailing hierarchical file

systems, both the research community and commercial

organisations have explored alternative approaches de-

signed to improve the situation. We now consider some

key examples.

One class of systems has taken the approach of en-

hancing search functionality. These include SFS [11],

BeFS [10], Connections [19], LISFS [15] and Spot-

light [3]. All of these systems provide alternate ways

of accessing the information stored in a hierarchical file

system. However, even this facility does not address the

basic goals of our work, to overcome the limitations of

hierarchies. These search tools operate in the context

of the existing hierarchical file systems and still leave

the user with the burden of manually reorganising files

if the user wants to organise documents into a different

hierarchical view.

By contrast, some research systems have attempted

a complete breakaway from the hierarchical model. Ex-

amples include LifeStreams [8], Presto [7], Placeless

Documents [6], PosCFS [13] and LIFS [2].

Selected systems particularly relevant to MetaView

will now be described in greater detail.

2.1 SFS

The Semantic File System [11] was the first implemen-

tation of a file system that was semantic in that it pro-

vided virtual directories for queries based on metadata

extracted from files. For example, it made use of au-

thor, title or words contained in the file. The way that

it worked was that a virtual directory was created on

request, the name of the directory being the query. This

virtual directory concept allowed for compatibility with

all existing software.

A process called a transducer ran automatically in

the background to keep the store of metadata up to date

with the contents of the files. The virtual directories

were provided using a custom NFS server.

The evaluation of this system was primarily focused

on system performance. The amount of disk space re-

quired for the metadata store and its index was deter-

mined. The total time to index files as well as incre-

mental updates to the index were also measured. The

authors concluded that the performance and space re-

quirements of realtime indexing were not overly taxing

for the file server. The system was found to be useful

for sharing files with other research groups, although

there was little detail of this. It was also noted that in

the case of file types for which no transducer had been

written, these files were difficult to locate.

2.2 LISFS

The Logical Information Systems File System

(LISFS) [15] is also an implementation of a semantic

file system. Like SFS 2.1, queries are supported as

virtual directories.

The system is implemented as a Linux VFS plugin.

Transducers operate in the background to collect meta-

data and update indices.

To make a query, a directory path is constructed

out of expressions about the collected metadata and

can include logical constructs such as ’and’, ’or’, ’not’.

Queries can be constructed incrementally. At each

stage in the query the user may choose to look at the

result set so far, or at a list of possible extensions to the

query. This allows for a kind of browsing with flexible

organisation of files, as the user proceeds.

Also supported is the ability to make a query within

a file, for example queries within a BibTex database

will return a portion of that file. The result set can be

edited and changes propagate back to the original in the

way that one would expect. This aspect of the system

enables the user to think about abstract documents even

when these are actually stored within a single file.

No formal evaluation of the system was mentioned

in the paper, although several examples were given of

the system in use. It operates on several file types,

including mp3 collections, source code, BibTex files

and email. LISFS is important in that it extends the file

system metaphor to allow more powerful and flexible

access to data in a manner compatible with existing

software.

2.3 LiFS

The Linking File System (LiFS) [2] extends the hierar-

chical file model to include the concept of links between

files. The authors point out that many applications have

developed their own systems of storing and searching

file metadata, including links. The main shortcoming

of this approach is that any one computer system will

12



have several incompatible stores of metadata using a

different interface.

The solution given by the authors is a file system

that includes support for traditional file metadata as

well as links between files. These links are intended

to allow desktop search tools to detect importance,

relevance and relations between documents in a similar

manner to the way web search engines use hyperlinks

in web pages.

New system calls were added to support creating,

reading and modifying links between files. Unfortu-

nately, this means that LiFS compromises compatibility

with existing applications.

The file system is designed to operate on high speed,

high capacity non-volatile memory. Several tasks were

performed with LiFS on standard volatile RAM,

compared with ext2 and XFS. LiFS outperformed these

systems in metadata access, and was close in other

areas such as creating/deleting files and read/write

operations.

2.4 Connections

Connections [19] is a desktop search tool. It works

similarly to content search tools like Spotlight [3], but

augments the results with contextual information gath-

ered from monitoring user activity.

The system traces all file activity by the user,

building up a relation graph between files. Links

are defined between files which were accessed at

similar times where these links represent a weighted

relationship. This graph is analysed, to discard

irrelevant, and append relevant entries to the standard

content search as well as to help rank these results.

The user evaluation performed by the authors

showed that Connections improved both average

recall and precision over a standard content search.

Additionally the performance impact of collecting the

trace data and analysing it to build the context graph

was found to be minimal.

2.5 Presto

The Presto [7] system’s primary method of locating

documents is through “collections”, where these are

live queries over document metadata combined with an

explicit document inclusion and exclusion list which

the user may manipulate. Collections may also be

nested.

One particularly novel feature is personal metadata.

When attaching metadata to a shared file, a user may de-

cide to keep that metadata private. This could be useful

for marking files as “interesting”, metadata that is not

necessarily relevant to other users of that document.

Presto sourced documents from many locations

including the local file system, network shares, web

sites, email clients, etc. These data sources were

implemented as plugins, each of which was responsible

for allowing read and write support to its respective

source data, as well as extracting metadata.

Two APIs were provided by Presto. A custom NFS

server acted as a compatibility layer intended for exist-

ing applications. The primary API allowed full access

to all of the functionality offered by the system.

A custom document browser was built in the pri-

mary API to allow users to create and manipulate col-

lections and the files within them. When a user wishes

to work with a document in a Presto-unaware applica-

tion, that application is launched and given the path to

a file on the NFS server.

There was no formal evaluation. However, the

authors reported that their goal, creating a system

where attribute-oriented access was the primary

method of document interaction, was successful.

3 Approach and Overview

Many of these novel approaches to explore alternatives

to the prevailing hierarchical file system structure use

virtual directories, whose path name constitutes a form

of search query string, as a user interface for finding

files. By contrast, our approach in MetaView is to cre-

ate views, which are populated with directories and files

such that the path to a file describes its contents accord-

ing to the metadata which the user is interested in. If

we think of the full path name of a file in a conventional

hierarchical file system as an ordered series of metadata

tags, essentially MetaView makes it possible to gener-

alise that to allow other orderings of the metadata to

create different views.

To implement this, we considered several possibil-

ities and implemented one based upon symbolic links

on a regular file system. This means that MetaView re-

tains full compatibility with all existing software and re-

quires no kernel modules or modifications. This makes

installation simple and means that users do not need to

trust their collection of files to an unknown file system.

Like Presto, MetaView attempts to provide an al-

ternative to the hierarchical file system for organising

and retrieving files. Presto’s “collections” are similar in

purpose to a “view”; however, there are some important

differences. Where a collection is a flat list of files

which may contain other collections, a view consists

of a possibly nested set of files and folders kept in a

structure managed by MetaView.

The following figures are screenshots from the Mac

OS X Finder. Each shows a different view of the same

collection of files, as described below. The goal of

MetaView is that users should be able to specify arbi-

trary views over their files as they wish, reflecting their

immediate needs for different structuring of their files.

For example, a user may decide to have several views

of their music files. Let us suppose that the first is a

flat list of files as shown in the small subset of a user’s

music files in Figure 1. This shows just the first few of a

large number of music files. Each of these has metadata

containing various attributes describing the file.

We now illustrate MetaView’s power to enable the

user to automatically reorganise this set of files for more

13



Figure 1: Artist-Title.mp3

convenient browsing. For example, suppose that over

time, the user has amassed large numbers of these mu-

sic files and at some stage, they decide to browse their

music, thinking of it in terms of the genre first and

within this, the artist. MetaView enables them to issue

a command to define this new view as illustrated in Fig-

ure 2. Note that in this case, many files fit into multiple

genres and the view takes care of this in the way that

the user would reasonably expect, placing the music file

into each genre folder it belongs in. This can be seen

in Figure 3, the file ‘Flat Ed - Growing Crows.mp3’

appears under both the ‘country’ and ‘indie’ genres.

Figure 2: Genre/Artist-Title.mp3 #1

Now we may suppose that at a later time, the user

decides they want to be able to browse their music in

terms of a different organisation, this time making the

artist the first aspect and within that the title. This is

illustrated in the example shown in Figure 4. Once

again, some music files have multiple artists and the

view will handle this correctly.

Figure 3: Genre/Artist-Title.mp3 #2

Figure 4: Artist/Title.mp3

The final example we will consider is of a combina-

tion of the previous two, browsing by genre, then artist

with the filenames being the title of the song (Figure 5).

This demonstrates the power of MetaView; users can

easily construct these alternate views of their files ac-

cording to their needs and wishes, enabling them to

adapt their file structure to changes over time.

Figure 5: Genre/Artist/Title.mp3

14



4 Architecture

File metadata can be thought of as an extension to the

hierarchical model. For our purposes, file metadata is

both structured data extracted from a file as well as an-

notations or tags that a user may provide. For example,

an email message may have the Subject, From, To, etc

headers extracted as metadata and users may tag photos

with the names of people in them.

MetaView has been implemented to run under Mac

OS X 10.5, making heavy use of the metadata capabili-

ties of the Spotlight API.

Apple’s Spotlight was chosen for this project due

to its wide support for existing file types and relative

maturity compared to other systems. Spotlight has

“importers” for many file types, these are called to

examine a file by Spotlight and extract any metadata

from it. This metadata is then stored and indexed

in the Spotlight database. Apple provides good

documentation on writing programs that make use

of this database as well as writing new importers

to support additional file types. MetaView can be

used with any file type supported by Spotlight, these

include: email, audio (MP3, AAC), office documents

(Microsoft Office & OpenDocument), images (JPEG,

PNG) and many others. There is also a commonly used

technique that allows Spotlight to index individual

documents even when they are all stored in a single file.

In addition to the automatically extracted metadata,

users may also annotate files with their own custom

metadata such as tags for project names, or to mark a

file as ‘todo’.

Mac OS X

Spotl ight

File System

Query and
result set

Materialise
view

MetaView

Filter

View

User

Creates
a view

Interacts
with v iew

Figure 6: MetaView architecture

The system is implemented in two parts; the search

filter and the metadata view (Figure 6). MetaView is

written in Python and uses Apple’s Spotlight API for

searching and access to file metadata.

As input to MetaView, users provide an optional

search query and a view specification which they wish

the search results to be displayed in. The search query

may be as simple as restricting the view to files in a

particular directory, or it may be omitted entirely.

An example query for all MP3 files on the system

would look like:

kMDItemContentType == ’public.mp3’

This query is expressed in the standard Spotlight query

language. It could easily be constructed by users in-

teracting with an application, such as the Mac OS X

Finder.

The metadata view is the most important part of

MetaView. In the case of this music example, metadata

is extracted by Spotlight from the ID3 tag of the MP3

files. This is a standard tag format that is included with

most MP3 music files. Users specify how they want

to view their files in the form of a structured hierarchy

with different metadata at each level. A view specifica-

tion for browsing music by genre, artist and then title is

expressed as:

$(genre)s/$(artist)s/$(title)s.mp3

View specifications are Python format strings that are

evaluated with respect to each file to be placed in the

view. This too could be made intuitive for users to

formulate, with the support of a graphical interface.

MetaView creates a Spotlight search for each view

that has a unique query. Spotlight then gives a list of

query results which MetaView uses to populate a direc-

tory with links to the original files according to the view

specification. In this way the user’s existing workspace

is not disrupted at all but they can still take advantage

of the advanced functionality the MetaView offers.

It is important to note that the user’s files remain on

their existing filesystem and can still be accessed in the

usual way if so desired. The view is implemented as

symlinks to the original files in a directory managed by

MetaView. As the user works on their system, creating,

deleting and editing files, MetaView keeps the view up

to date in real time.

Spotlight notifies MetaView whenever there is a

change to any of the files that are being watched,

whenever a new file becomes relevant and whenever

an existing file is no longer relevant. This notification

consists of a list of all the files which currently

match the search results. MetaView takes this list

and performs a stat() on each file to check its last

modification time and sorts the Spotlight list into

removed files and added files. A changed file is

removed and then re-added.

These lists are then passed to the ‘view’ compo-

nent which removes all links to the removed files and

then inserts links to the added files into the appropri-

ate places. By this process unchanged files are left in

place rather than recreated each time Spotlight sends an

updated result set.

15



The user may interact with the constructed view us-

ing any existing software. Views can be browsed from

the command line or using the Finder. As symlinks are

used, opening any link from any application causes that

application to work on the original file.

In this way users can create views of their file col-

lection and work with them using their existing soft-

ware.

The concept of a view, providing flexible

organisation of a users’ file collections, not specific to

any particular operating system. It is a generalisation

of existing hierarchical file systems and is a generic

concept that could be implemented under any operating

system. However the prototype discussed is tied

closely to Mac OS X. For a Linux version, the

Spotlight metadata backend could be replaced with

Strigi [1] or Tracker [9] while the symbolic link

implementation of views would remain unchanged. To

port MetaView to Microsoft Windows would require

larger changes; both the view and the search filter

components would need to be rewritten.

5 Scalability Evaluation

Since MetaView is designed to support new ways to

organise collections of files, it is important to assess

whether it can do this efficiently and to have an un-

derstanding of the scalability as the numbers of files

grows. We need to assess the scalability of MetaView

for its two main actions, constructing a new view and

updating a view after relevant changes in the part of the

filesystem managed by MetaView. A relevant change

is a modification to a file’s data or metadata such that

the file needs to be added to the view, removed from

it or moved within it. We now describe two forms of

scalability analysis, the first analytical, based only on

the operations required and the second empirical, based

on results with actual sets of files.

5.1 Analytical

One of the key costs of handling changes to the man-

aged file set is due to our use of Spotlight for the current

implementation. The Spotlight API does not give a list

of changes to search results. This imposes a small con-

stant time cost for each file in the result list whenever

a change is made. For each change to the view, there

may be several calls to the more expensive mkdir(),

rmdir(), symlink() or unlink() as well as the cost

of extracting metadata attributes from the Spotlight API

in order to effect the update. For each update posted by

Spotlight, there is a cost O(Sn + Um); where n is the

number of files in the result set, m is the number of

changed files, S is the cost of a stat() and U is the

cost of updating the view for a single file.

If the Spotlight API were enhanced to give incre-

mental updates to search results, rather than posting the

entire result set each time, this performance could be

improved. The complexity would drop to O(Sm +

Um), a dramatic improvement, especially for the im-

portant case where there is a large set of files and there

is a change to a small number of them.

The cost of creating the view is the expected

O(Un).
The cost of using MetaView would remain the same

for any file type supported by Spotlight. This is be-

cause every Mac OS X computer has already indexed

every Spotlight-supported file on the system, and the

cost of extracting metadata from the Spotlight database

is independent of the original type of the file.

5.2 Empirical

For this test, we chose to use a set of files that could be

readily assembled and where we could also gain meta-

data that would be useful for creating structures. We

chose to use a collection of creative commons licensed

music which could be used freely by others to repeat

the experiment. The evaluation was conducted with a

10GiB collection of music from opsound.org [14] with

1836 MP3 files. For each of these files Spotlight allows

access to metadata such as artist, title and usually multi-

ple genres. The testing was performed on an Intel iMac

running Mac OS X 10.5.5 with a Core 2 Duo 2.16 GHz

processor and 1GiB of memory.

The cost of a single stat() system call was mea-

sured to be an average of approximately 0.0015 seconds

over 1000 uncached files. This drops to about 0.00001
seconds for 1000 cached files. However in general, we

would expect that the files that MetaView will be per-

forming a stat() upon will not be cached, giving the

slower time as the expected average. This corresponds

to the S variable in the analytical analysis.

For the majority of cases in a large collection

of files, updating the view will be a matter of a

symlink(), unlink() or both for each file that needs

to be updated. Over an average of 1000 files, the cost

of a symlink() and an unlink() was measured to be

0.0003 seconds. Note that for each file that needs to be

placed in several locations, this will require multiple

system calls. So the actual time for the update will

depend upon this.

MetaView took 20 seconds on average to construct

a view in the format: Genre/Artist/Title.mp3. To

update the view after changing one file took 3 seconds

on average. Almost all of this time was spent in the

stat() call, required to determine which file in the list

from Spotlight was the changed one.

Additional tests were performed with different sized

file collections, these can be seen in Figure 7 and 8.

All tests were performed 3 times while the system was

under no load and the result was averaged. In all cases

there was less than one second difference between the

trials.

The difference in time between the two views re-

flects the number of links that must be created in each

case. In Figure 8 exactly one link is created for each

16



��

��

���

���

���

�� ���� ���� ���� �	�� ����������������������	�������



��


�
��


�
�

����
��������
�

��
�����
�����


Figure 7: Results: Genre/Artist/Title.mp3

��

��

��

��

��

��

��

���� ���� ���� ����� ����� ����� ����� ����� �����

	

�
��

��
�


�

�����������
���

�����
��

Figure 8: Results: Artist - Title.mp3

file, compared with Figure 7 where each file appears in

several genres.

The empirical results match up with analytical anal-

ysis showing that MetaView scales linearly with the

number of files it manages.

6 Conclusions and Future Work

A major performance cost is processing the complete

set of results that Spotlight posts whenever a change

is detected in even a single file. MetaView could use

the FSEvents API to watch for changes to files on the

system, in this way it would know which files have been

changed in a Spotlight result set without resorting to a

stat() of each file. This approach adds the cost of

processing each file change event on the system, which

may even be more work. A better solution would be

possible if Spotlight optionally provided updates to ex-

isting result sets rather than reposting the complete list

of files each time.

Presto provides users with the ability to add and re-

move files from a collection and have these actions stay

persistent. MetaView nearly gets this ability for free by

using the regular file system. If a file is added to a view

or removed from a view by another program, MetaView

will simply ignore it. However additional support for

this would be useful. For example, the action of placing

a file into a directory which contains files tagged as

“todo” could tag that file. This means it would appear

in other views that show files tagged as “todo”.

There are several promising directions for future

work. One of these would provide support for

“bundles”. These are groups of files which should be

treated as one logical unit. Particularly on Mac OS X,

many applications create directories full of files that

appear to the user as one bundle. MetaView should

also treat this as one when populating views and not

delve inside the logical unit.

A complementary direction would support users

in creating views of abstract “documents” which are

stored within a single file. One important example

of this is the standard mbox file which contains a

collection of mail items, each of which the user may

think of as a separate document. Another class of

example is a file containing a collection of consistent

elements, such as bibtex entries. Since the user may

wish to organise these virtual documents into different

structures, it would be valuable for MetaView to be

able to operate at this level. The simplest way to do this

is to make these abstract documents appear to Spotlight

as individual files. Many Mac OS X programs already

use this technique, including Apple’s Address Book for

contacts as well as Safari for bookmarks and history.

Stand-in files are created for each abstract document

with just enough information to allow the owner

application to find the actual content.

The system could be further integrated with applica-

tions by giving users the ability to apply custom meta-

data to files when saving them. A save dialogue that

allowed users to tag files, displaying a list of commonly

used tags, might be a good way to achieve this.

MetaView represents an exploration of a new mech-

anism for supporting flexible organisation of personal

information, in terms of arbitrary sets of hierarchical

organisations of documents. With MetaView, users can

flexibly create views of their file system where these

views structure the documents in the ways that suit the

user’s current needs, even if this was not anticipated

when the files were first saved and organised. These

views are automatically updated as the contents of the

file system changes, keeping the user’s workspace up

to date and organised with minimal effort on their part.

Importantly, the user’s existing file system organisation

is left untouched by MetaView, allowing a user a safe

entry point, so they can use MetaView without altering

their existing work practices and without the risk of

being unable to use the multitude of existing operating

system services.

MetaView provides a flexible and adaptable

new means to organise and access files. While it

is consistent with the mental model of traditional

hierarchical file systems that most users are familiar

with today, it enables the user to extend that

same mental model to arbitrary new organisation

possibilities, while preserving compatibility with

existing software and work practices.

17



References

[1] Strigi - the fastest and smallest desktop searching pro-

gram. http://strigi.sourceforge.net, 2008.

[2] Sasha Ames, Nikhil Bobb, Kevin M. Greenan, Owen S.

Hofmann, Mark W. Storer, Carlos Maltzahn, Ethan L.

Miller and Scott A. Brandt. Lifs: An attribute-rich file

system for storage class memories. In Proceedings of

the 23rd IEEE / 14th NASA Goddard Conference on

Mass Storage Systems and Technologies, 2006.

[3] AppleComputer. Working with spotlight. http://

developer.apple.com/macosx/spotlight.html,

2006.

[4] Deborah Barreau and Bonnie A. Nardi. Finding and

reminding: file organization from the desktop. SIGCHI

Bull., Volume 27, Number 3, pages 39–43, 1995.

[5] Richard Boardman, Robert Spence and M. Angela

Sasse. Too many hierarchies? the daily struggle for

control of the workspace. In Proceedings of HCI

International 2003, pages 616–620, New Jersey, USA,

2003. Lawrence Erlbaum Associates.

[6] Paul Dourish, W. Keith Edwards, Anthony LaMarca,

John Lamping, Karin Petersen, Michael Salisbury, Dou-

glas B. Terry and James Thornton. Extending doc-

ument management systems with user-specific active

properties. ACM Transactions Information Systems,

Volume 18, Number 2, pages 140–170, 2000.

[7] Paul Dourish, W. Keith Edwards, Anthony LaMarca and

Michael Salisbury. Presto: an experimental architecture

for fluid interactive document spaces. ACM Transac-

tions Computer-Human Interactaction, Volume 6, Num-

ber 2, pages 133–161, 1999.

[8] Scott Fertig, Eric Freeman and David Gelernter.

Lifestreams: an alternative to the desktop metaphor.

In CHI ’96: Conference companion on Human factors

in computing systems, pages 410–411, New York, NY,

USA, 1996. ACM.

[9] Gnome Foundation. Tracker - a personal search tool and

storage system. http://live.gnome.org/Tracker/

WhatIsTracker, 2008.

[10] Dominic Giampaolo. Practical File System Design with

the Be File System. Morgan Kaufmann Publishers, Inc.,

1999.

[11] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon and

Jr. James W. O’Toole. Semantic file systems. In SOSP

’91: Proceedings of the thirteenth ACM symposium on

Operating systems principles, pages 16–25, New York,

NY, USA, 1991. ACM.

[12] William Jones, Ammy Jiranida Phuwanartnurak, Ra-

jdeep Gill and Harry Bruce. Don’t take my folders

away!: organizing personal information to get things

done. In CHI ’05: CHI ’05 extended abstracts on

Human factors in computing systems, pages 1505–1508,

New York, NY, USA, 2005. ACM.

[13] W. Lee, S. Kim, J. Shin and C. Park. Poscfs: An

advanced file management technique for the wearable

computing environment. Lecture Notes in Computer

Science, Volume 4096, pages 966, 2006.

[14] OpSound.org. http://opsound.org, 2008.

[15] Yoann Padioleau, Benjamin Sigonneau and Olivier Ri-

doux. Lisfs: a logical information system as a file

system. In ICSE ’06: Proceeding of the 28th interna-

tional conference on Software engineering, pages 803–

806, New York, NY, USA, 2006. ACM.

[16] Pamela Ravasio, Sissel Guttormsen Schär and Helmut

Krueger. In pursuit of desktop evolution: User problems

and practices with modern desktop systems. ACM

Transactions Computer-Human Interaction, Volume 11,

Number 2, pages 156–180, 2004.

[17] Dennis M. Ritchie and Ken Thompson. The unix time-

sharing system. Commun. ACM, Volume 17, Number 7,

pages 365–375, 1974.

[18] C.A.N. Soules and G.R. Ganger. Why can’t i find my

files? new methods for automating attribute assignment.

Proceedings of the 9th conference on Hot Topics in

Operating Systems, Volume 9, pages 20–20, 2003.

[19] Craig A. N. Soules and Gregory R. Ganger. Connec-

tions: using context to enhance file search. SIGOPS

Oper. Syst. Rev., Volume 39, Number 5, pages 119–132,

2005.

18




