
WebKnox: Web Knowledge Extraction

David Urbansky
School of Computer Science and IT

RMIT University
Victoria 3001 Australia

davidurbansky@googlemail.com

James A. Thom
School of Computer Science and IT

RMIT University
Victoria 3001 Australia

james.thom@rmit.edu.au

Marius Feldmann
Department of Computer Science
University of Technology Dresden

Germany

feldmann@rn.inf.tu-dresden.de

Abstract The paper describes and evaluates a system
for extracting knowledge from the web that uses a do-
main independent fact extraction approach and a self
supervised learning algorithm. Using a trust algorithm,
the precision of the system is improved to over 70%
compared with a baseline of 52%.

Keywords Information Extraction, Web Mining

1 Introduction
Given the vast quantity of repeated information avail-

able on the web, it has become possible to more reliably

extract factual knowledge about many different entities.

Therefore it is useful to have a automatic approach that

finds pages containing facts and extracts the best an-

swers. This paper describes and evaluates a system

WebKnox (Web Knowledge eXtraction) for extracting

knowledge from the web.

WebKnox’s input consists of the following parts:

1. The concepts, e.g. Car or Country.

2. The attributes for each concept. The attributes

determine which facts are searched for each entity

in the concept. E.g. for the Country concept

attributes could be population and capital.

3. The entities for each concept. The entities and

attributes together build the templates that are

filled in the fact extraction process. E.g. for the

Country concept, Australia and Germany are

valid entities.

The following are the main contributions in this

paper. We present a domain independent fact extraction

approach that retrieves web pages with factual

information, analyzes those semi-structured pages,

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

and extracts facts from generic structures and formats

that commonly occur on websites. We introduce a

self supervised learning algorithm that automatically

estimates the precision of the different structures used

to extract the facts. We show how the extraction

precision for numeric values can be increased by cross

validating them with numeric values from other entities

of the same concept. We demonstrate how a trust value

can be assigned to the extracted facts which is used to

rank the extractions and help the end user determine

which facts can be trusted.

2 Background
2.1 Web Information Extraction
This section gives background information about infor-

mation extraction in general and the extraction tasks for

the web in particular.

In contrast to information retrieval (IR), where the

task is to find relevant information for a given query

and to rank the results, information extraction (IE) is

the process of extracting information to a given target

structure such as a template or an ontology. The IE

tasks are defined by an input (e.g. an HTML page) and

an output (e.g. a populated database) [2].

There are several main tasks in information extrac-

tion.

1. Named Entity Recognition (NER) is the task that

identifies entities in a given text. It is the easiest

task, however it is more recognition than extrac-

tion because no new entities are extracted.

2. Coreference Resolution (CO) identifies identity re-

lationships between entities in texts.

3. Entity Extraction (EE) is the task of discovering

new instances of a concept.

4. Fact Value Extraction (FVE) is the task of finding

values for given attributes for a given entity. e.g.

27



the entity “Australia” and the attribute “popula-

tion” are given and the value for the attribute is

searched.

5. Fact Extraction (FE) is a similar task to FVE but

no attributes are given for the extraction process.

2.1.1 Web Information Sources

The choice of the information extraction technique de-

pends on the format of the source. The world wide web

consists of documents that belong to one of the three

main types of sources: unstructured, semi-structured

and structured.

In web information extraction, semi-structured

sources are mainly HTML files. That is because they

contain lots of unstructured data as texts but use tags to

structure that data for rendering purposes.

Internal Representation Before examining the main

techniques that access and extract from these web

sources it is important to understand that the content

can be represented in two main forms.

1. A hierarchy of nodes represents the source as a tree

of nodes (such as element or text nodes). This rep-

resentation is usually instantiated using the Docu-
ment Object Model (DOM).

2. A tokenized string represents the source as a

parsed string of words, numbers etc. (so called

tokens). This representation is often used for free

text as there is no other structure that can be used

to represent the information.

2.1.2 Information Extraction Techniques

Natural Language Processing (NLP) can be

employed for web information extraction using a set

of techniques that make the natural language more

machine readable. Those techniques are for example

tokenization, sentence splitting, orthomatching
(coreference resolution) and regular expressions.

Wrapper Induction “A program that makes an exist-

ing website look like a database is called a wrapper.”

[3]. Wrappers perform pattern matching to find the

information of interest. The main goal in learning a

wrapper is to find a general description of what the

information that is supposed to be extracted looks like.

Writing a wrapper by hand is labor intense and over the

time more automation has been introduced. Chang et al.

[2] classify these wrapper techniques in four categories

with increasing automation:

1. manually-constructed wrappers. The user writes

a wrapper for every web site he wants to extract

information from which means that he has to

have a profound understanding of programming

languages. That requirement makes it however

impractical for a broad domain approach.

2. supervised wrapper construction. For supervised

learning a wrapper, a human labels information on

a set of HTML pages he wants to have extracted.

These labels are taken as positive examples for

the learning algorithm. Non-labeled data serves

as negative examples. The user does not need any

programming knowledge but needs only to be able

to mark up the content or use a graphical user in-

terface to do that.

3. semi-supervised wrapper construction. Semi-

supervised systems require the user not to give a

whole exact labeled set of web pages but rather

guess extraction patterns on given examples.

The user then has to decide which pattern is the

correct one, thus the extraction process becomes

supervised.

4. unsupervised wrapper construction. The unsuper-

vised approach requires no user interaction. While

former approaches needed a user to specify the

data of interest, the extraction target in supervised

extraction are data rich regions of the website [2].

Wrapper induction techniques are primarily used

for structured or semi-structured sources as many

techniques rely on the DOM tree.

2.1.3 Correctness of Extracted Information

Traditional IE focuses on extracting as much informa-

tion as possible from a small corpus whereas web infor-

mation extraction systems often rely on the redundancy

of web content [6]. That means that the focus of the ex-

traction techniques should be set on the precision as the

recall automatically comes with many mentions of the

entity or fact that is extracted. One major problem with

web information extraction systems is that the quality

of the extractions can vary, i.e. extracted entities may

not really belong to the concept they were assigned to

or facts are wrong.

Simple Scoring For the fact extraction task a simple

scoring, based on the number and quality of sources

can be used to decide which fact extraction is correct

and which is not [7]. The effectiveness of simple scor-

ing relies however on the assumption that correct facts

are extracted more often than incorrect facts which also

depends on the extraction technique and the type of

the fact. Rare facts for example might be extracted

correctly but do not score very high.

Pointwise Mutual Information Etzioni et al. [4] use

patterns as discriminators to ensure the correctness of

an extracted fact or entity. That means they use these

discriminators as queries for web search engines and

calculate pointwise mutual information (PMI) between

the extraction and the discriminator with the hit counts.

If E is an extracted entity and D is the discriminator

phrase, the PMI can be calculated as in the Equation 1.

28



PMI =
Hits(E + D)

Hits(E)
(1)

2.2 State-of-the-art Systems
KnowItAll [4] is a domain independent, unsuper-

vised system that automatically extracts entities and

facts from the web. KnowItAll is redundancy-based

which means it relies on the assumption that a fact or

entity occurs many times on the web. The system’s

strength is finding new entities for a given class (EE

task). To do that, it uses a set of domain independent

patterns and queries a search engine with that pattern.

The input for KnowItAll is a set of concepts, at-

tributes and relations. The extractor module queries

search engines with extraction patterns and performs a

shallow syntactic analysis. A discriminator is an extrac-

tion pattern with alternative text. The assessor module

queries search engines with discriminators to validate

a particular extraction and ensure the precision of the

system. For that purpose, KnowItAll uses PMI.

KnowItAll is specialized in extracting entities and

has its limitations in extracting facts. It can extract

entity relations found in free text but much information,

especially numbers (e.g. the population of a country) is

given in table structures that are not evaluated by Know-

ItAll. Also the PMI score for validating the extractions

would most likely not work with numeric extractions.

Textrunner [1] goes one step further beyond the ca-

pabilities of KnowItAll, as it does not require any user

input which is more scalable and easier to apply for new

domains. Its only input is the corpus of web pages, and

information is extracted in a single pass. This happens

in three steps for every sentence read: (1) The noun

phrases of the sentence are tagged, (2) nouns that are

not too far away from each other are put into a candidate

tuple set and (3) the tuples are analyzed and classified

as true or false.

GRAZER [7] is a system that corroborates and

learns new facts. The input for GRAZER are seed

facts (attribute-value pairs) for given entities. Entities

and seed facts are automatically generated using

specialized wrappers. For the given entities, relevant

pages are obtained. Relevant pages are those that have

a mention of the entity. On these pages the seed facts

are corroborated and new facts are extracted. The

system searches for mentions of the seed facts on the

relevant pages and adds the source if the fact was found

on the page. The corroboration happens in free text and

in structured HTML as all tags are removed and only

the area around the attribute name is searched for the

mention of the value.

Although GRAZER does not need an ontology

about the knowledge domain as an input it relies on

a set of seeds for entities and facts. These seeds are

obtained in an non generic way by inputting the data

by hand, which is labor intense or by scraping sources

with specialized wrappers. The same facts are extracted

several times and are treated as new facts when they

have a different attribute which is just a synonym, e.g.

“Birthday:17.01.1962” is another fact than “Date of

Birth:17.01.1962”.

3 Design
This section introduces the design of our system for fact

extraction from the web. First, the knowledge to be

extracted is encoded in an ontology, then entities are

given, and then the fact extraction process automati-

cally finds the values for the specified attributes.

3.1 Knowledge Representation
Before the extraction process can start WebKnox needs

to know what concepts, attributes and entities exist.

This knowledge is called prior knowledge. The prior

knowledge for WebKnox is modeled in an ontology

using OWL. Therefore, all concepts and attributes are

defined in the knowledge ontology and the entities and

facts that are extracted are stored in another separate

data ontology.

The purpose for the knowledge ontology is (1) to de-

fine the knowledge represented in the data ontology and

(2) to serve as an input for the extraction process. In the

knowledge ontology every attribute gets an OWL data
type property assigned to it. This determines which type

of value the attribute will have and can be used for (1)

other programs reading the ontology, trying to parse the

data and (2) for the extraction process to know which

values on a source are candidates for the attribute. A

datatype property can have any XSD datatype1 but We-

bKnox only uses the following:

1. String: A string is a sequence of characters, We-

bKnox will however only consider proper nouns

as fact candidates for a string attribute, i.e. only a

sequence of words starting with a capitalized char-

acter or a number are considered to be possible

answers.

2. Boolean: Attributes with a boolean value can

either have true or false as a value. WebKnox

searches boolean values only in tables and looks

for “yes” and “no” occurrences.

3. Decimal, Double, Float, Integer, Int, Long:

These are numeric attributes which are all handled

equally by WebKnox. Every numeric attribute

is handled as a double and only occurrences of

numbers are extracted as fact candidates for the

attribute.

4. Date: An XSD date is a string given in a

standardized UTC format: YYYY-MM-DD.

WebKnox will look for several representation of

dates on web sources and tries to transform these

back to the UTC format.

1http://www.w3.org/TR/xmlschema-2/#d0e11239

29



5. AnyType: Attributes with values that do not

match any previously mentioned data type can

have the AnyType property. WebKnox takes all

characters around or after the attribute on the web

source into account when determining the fact

candidates. Thus AnyType can be used for strings

that are not proper nouns.

3.2 Fact Extraction
The first process is the retrieving of the source pages

which gets an entity and its attributes as input. The

extraction process then extracts the values for the en-

tity’s attributes from the websites retrieved. The ex-

tracted facts are normalized and eventually the trust in

the extractions is calculated.

3.2.1 Retrieving Fact Pages

Retrieving relevant pages that host the searched facts

is a crucial process that has to be tightly coupled with

the extraction process. As input data the source re-

trieval process gets the names of the entities and at-

tributes that are being searched for. The process then

queries a search engine and outputs the retrieved pages

together with information about which attributes are ex-

pected on the page. This output is fed into the extraction

process. The focus lies on retrieving semi-structured

HTML pages as they are easy to access via generic

search engines as Google2.

To retrieve pages that have the searched facts

present, WebKnox uses two kinds of generic queries.

The first kind is called multi-attribute query, it tries

to find pages relevant to the entity and extract all

searched facts from the retrieved pages (e.g. the query

“Australia”). The second kind is the single-attribute
query and is focused on each single attribute, i.e. it

queries the search engine with attribute specific terms

(e.g. the query “Australia population”).

The retrieved websites are then passed to the fact

extraction process. The fact extraction process also gets

information about the type of the query so that it only

looks for a single attribute on single attribute pages and

tries to find all attributes on general fact pages retrieved

by multi-attribute queries.

3.2.2 Exploiting Structure and Format of Web
Pages

The quality of extracted facts can be increased by using

different extraction structures for different types of fact

appearances. As covered in the background a com-

mon approach for fact extraction is to use the com-

plete website content and simply remove all HTML tags

(as done by the GRAZER system [7]). That however

also removes all advantages that come with the semi-

structured type of HTML documents. WebKnox differs

from current approaches as it takes the extraction struc-
tures, i.e. the different generic formats and structures

2http://www.google.com

into account that are used to represent facts on web

pages.

Definition 1 (Extraction Structure). An extraction
structure is the pattern or format the extracted fact is

represented on a source.

These extraction structures are phrases, tables,

colon patterns and free text.

Phrases are natural language representations

of facts for a specific entity. For example the

phrase “The capital of Australia is Canberra” is

used on a website. The phrase covers the fact

capital:Canberra for the entity Australia. Ideally

the searched value for the attribute appears right

after the “is” in the phrase. WebKnox uses only

two phrases: the ATTRIBUTE of ENTITY is and

ENTITY’s ATTRIBUTE is. These phrases are also

used by the source retrieval process to discover pages

that state these phrases.

Tables are important HTML structures on the web

that are used to represent many facts, which led to

numerous wrapping techniques. Keeping the HTML

structure allows to traverse in the DOM Tree of the

website and find corresponding attribute-value pairs

in tables. Figure 1 shows an example3 of a rendered

HTML table in a) and the DOM representation of that

part in b). That is a very easy example of a table but

also a very common one. By identifying the td-element

with the attribute, the sibling td-element with the value

can be found and only the text inside that element is

extracted.

Figure 1: A table for mobile phone specifications

Colon pattern is the text that is right after a colon

(“:”). Often facts are given in an unstructured way (no

tags) but with the format ATTRIBUTE:VALUE so that

only the text after the colon needs to be extracted. Fig-

ure 2 shows an example4 of this representation, where

3Table from http://gsmarena.com/nokia n95-1716.php
4Data from http://engadget.com/2008/08/30/

msis-wind-u90-to-boast-8-9-inch-display/

30



a) depicts the HTML rendered version while b) shows

the text as it is seen when the separating tags are re-

moved (replaced with whitespace). If one would try to

extract the processor attribute (PROC), expecting a nu-

meric value and not noticing the format, the 2008 would

be extracted as it is closer to the processor attribute than

the correct value 1.6GHz after the colon. The colon

pattern can therefore help increasing the fact extracting

precision in a very simple manner.

Figure 2: An example for fact representation in a colon

pattern, a) shows the presentation in rendered HTML,

whereas b) shows the data when tags are removed

(replaced with white space)

Free text is the absence of structure (tags) and ad-

ditional format (phrase or colon pattern). Facts can

also appear in long paragraphs of text but as no further

information about the structure and format is given, all

text around the attribute has to be considered as a valid

answer for the attribute’s value. It is assumed that al-

ways the next matching value closest to the attribute is

extracted. WebKnox takes the sentence in which the

attribute appears as the boundary. This way incorrect

information further away is not extracted as well. Using

information found in free text increases the recall and

must be considered, especially for rare facts that do not

appear in tables or other structures and formats.

Some extraction structures are more reliable than

others. It is also necessary to take all possible extraction

types as it increases the recall and some facts can only

be found looking in a certain structure. The trust in the

fact values extracted by a structure must therefore take

the employed extraction structure into account. The

next section describes how the trust in extracted facts

is calculated.

3.2.3 Calculating the Trust in Extractions

Once values for attributes have been extracted, they

need to be ranked in order to determine the value that

is most likely to be the correct one for the attribute. It

is now necessary to find the correct ones by assigning

trust to each extraction.

Definition 2 (Trust). The trust is a non negative num-

ber. The higher the number the more reliable the ex-

tracted value.

The following equations assign trust values and aim

to improve the ranking of the extracted values, i.e. to

put the correct ones on top.

The easiest way to rank the extracted values it

by just counting the number of extractions. The

more often a value has been extracted, the higher the

trust value. Equation 2 shows how the trust value is

calculated in that case, with N being the number of

extractions for the given value, and x being a tuple

consisting of concept, entity, attribute and value,

x =< xconcept, xentity, xattribute, xvalue >. This way

of assigning a trust value is called “Quantity Trust”

from now on.

QuantityTrust(x) = N (2)

The Quantity Trust does not make use of additional

information like where (the source) and how (extrac-

tion technique/structure) the fact was extracted. This

information must be considered when determining the

trust for an extraction.

Determining the Source Trust Some pages that

are retrieved for the extraction process mention the

attribute and its value several times. For example,

suppose a page that is retrieved, when searching for

the entity Nokia N95 and the attribute talk time,

mentions the attribute several times, two times with

the correct value of 6.5 hours but three times with

different values that do not relate to the entity but to

other mobile phones. The source trust can therefore

be reduced whenever there is more than one value for

the searched attribute as shown in Equation 3, where

D is the number of different values found for the given

attribute and source. The source trust can have values

between 0 and 1 with one being highest trust and zero

being no trust.

SourceApplicability(attribute,source) =
1
D

(3)

Determining the Extraction Structure Trust
Extraction structures have different precisions that

must be taken into consideration when calculating the

trust for a fact value. The values determined in the

test set are not representative for all possible concepts

and domains. Since WebKnox aims to be domain

independent, the precisions determined for the test

set cannot be taken as references. WebKnox uses self

supervised machine learning to automatically estimate

the trust for the four extraction structures used. The

trust value for the extraction structures is an estimated

precision, i.e. it is a number between 0 and 1 with one

being highest trust (all extractions were correct) and

zero being no trust (all extractions were incorrect).

For all extraction structures e, information about the

number of extractions N(e), and the number of correct

extractions C(e) is kept. The ExtractionStructureTrust

is then calculated as the ratio of correct extractions to

total extractions (Equation 4):

ExtractionStructureTrust(e) =
C(e)
N(e)

(4)

Initially all extraction structures are initialized with

a trust value of 0.5. The three steps are then as follows:

1. The input for the first step is the extraction result

with an assigned trust. In the first step the high-

est trusted fact is searched throughout all concepts

31



and attributes. It is then assumed that this fact

is really a correct one, since it has a high trust.

All extraction structures used to extract that very

fact value get credit for a correct extraction, i.e.

, C ′(e) = C(e) + 1 and N ′(e) = N(e) + 1.

Extraction structures that led to wrong fact values

for that attribute, get credit for a wrong extraction,

i.e. N ′(e) = N(e) + 1. In the next iteration that

highly trusted fact is not considered anymore when

looking for the highest trust.

2. In the second step, the trust for the extraction

structures is updated based on the number of

correct and total extractions that have been revised

in the former step, i.e. the extraction structure

trust is recalculated using Equation 4.

3. In the third step, the trust for all extracted val-

ues is recalculated by using the updated trust for

the extraction structures. After this step, the rank-

ing of the extracted values for each attribute might

change. The newly ranked list is then again input

for the first step to repeat the process. The itera-

tion can be stopped when the trust for the different

extraction structures converges. In case the trust

does never converge, the iteration will only stop

after all highest trusted facts have been evaluated

in step one.

Combining Source and Extraction Structure Trust
Taking both, the source trust and the trust in the extrac-

tion structure, into consideration, the trust for an ex-

tracted value can be calculated as shown in Equation 5.

S is the set of sources the given fact has been extracted

from, ExtractionStructureTrust(e) is the trust of the ex-

traction structure e used and SourceApplicability(s) is

the trust for the source s. The trust will therefore be

high, when the value has been extracted in many trust-

worthy sources using numerous highly trusted extrac-

tion structures. This trust formula shall be called “Com-

bined Trust”.

CombinedTrust(x) =∑
s ε S

(
∑
e ε E

ExtractionStructureTrust(e) ∗

SourceApplicability(xattribute, s)) (5)

Normalization Facts can be represented in different

formats which still represent the same thing. For

example dates can be written in many ways, such as

January, 17th 1962 or 17/01/1962. Also many

numeric facts have units. Not taking the unit into

account leads to the extraction of two different facts

where actually only one is mentioned, e.g. 2 inch and

5.08 cm is the same fact. Normalization helps to find

facts from different formats and to cluster them.

Validating Numeric Fact Values across Entities
Another problem with extracted facts is that some

attributes do not have a single absolutely correct

value. The population attribute for example is not

mentioned correctly on any website on the entire

web as it changes almost every second. Instead

there are values that are almost the same and can be

considered correct. Fact values for attributes with

fuzzy values tend to not corroborate well. For example,

the following fact values might have been extracted for

the population attribute for Australia:

300 (3 times)
21000000 (1 time)
21340000 (1 time)
22578420 (1 time)
20452340 (1 time)

The problem here is that the exact same number for the

population is not mentioned on more than one source.

The incorrect extraction 300 however is extracted sev-

eral times and therefore gains higher trust.

To solve that problem, two assumptions are made:

1. The order of magnitude (OOM) for numeric facts

is often the same for entities within the same con-

cept; there are exceptions such as the population

of countries.

2. There are well-known entities where the informa-

tion about the numeric attribute can be extracted

with relatively high trust because they appear on

very many pages.

Both assumptions were supported in our test set for

most of the fact values. A bigger test set with more

entities (and more well-known ones) would most likely

further support that assumption.

To make advantage of the fact that the OOM is often

the same, WebKnox uses a validation process across

all entities for a given attribute. This process is called

“Cross Validation” and is part of the second step in the

self supervised learning loop. It works as follows:

1. For all numeric attributes, an OOM distribution is

constructed.

2. If the highest trusted value from the first step of

the learning loop is a numeric value, the number

is considered to be correct and the OOM of that

number is given credit in the attribute’s OOM dis-

tribution.

3. In the next iteration the trust for the fact values

for the same attribute will be calculated as shown

in Equation 7. The CrossValidationFactor for a

numeric fact value is one plus the support of the

OOM, which is a number between 0 and 1 with 1

being 100% support (all other entities of the con-

cept had values with exactly the same OOM for

that attribute) and zero being 0% support (no other

entity of the same concept had the same OOM for

that attribute).

32



CrossValidationFactor(x) =
1 + support(�log10(xvalue)	, xconcept) (6)

CrossValidationTrust(x) =
CombinedTrust(x)) ∗ CrossValidationFactor(x) (7)

4 Evaluation
The Test Set contains six different concepts (five en-

tities each) and five data types. In total there are 255

facts to extract.

The entities for each concept were chosen

manually by applying following criteria to gain a more

representative sample for each concept: Notebooks,

Mobile Phones and Cars were chosen from different

manufacturers; small and large Countries were

chosen; Movies were chosen based on popularity; and

only well known Actors were chosen.

For the evaluation, 2420 HTML pages were

retrieved using the REST web service from Yahoo!5.

Each entity was searched for using two multi-attribute

queries and each attribute of an entity resulted in three

single-attribute queries. For each query, only the top

eight retrieved URLs were used for the fact extraction

process. Not all queries led to eight answers from the

search engine, in that case all answers were taken.

The standard measures for comparing extraction

systems are precision and recall. In web information

extraction, the precision measures the ratio of correctly

extracted facts or entities to the total extractions,

and the recall measure determines the ratio of the

performed extractions and the extractions expected.

Additionally, the measure found is used several times.

Found is the ratio of extracted facts (correct or not) to

expected facts. A found value of one means, that for

every attribute at least one value has been extracted. If

not otherwise stated, the measures always relate to the

complete test set of the WebKnox system.

Baseline Basically two different approaches are used

today: (1) wrapper induction and extracting from tables

and (2) treating the website as a long (tokenized) string

by removing the tags. As the developed approach ex-

tracts information not only from tables it is appropriate

to compare it to the latter technique.

The baseline extraction works similar to the tech-

nique from the GRAZER system [7]. All tags are re-

moved from the website, all occurrences of the attribute

are evaluated and the corresponding fact values are ex-

pected before or after the attribute. Only the first 150

characters before and after the attribute are searched

for the matching value to delimit noise. The trust is

calculated only by counting the number of extractions

(Quantity Trust).

5http://developer.yahoo.com/search/

Evaluation of Source Retrieval WebKnox uses a set

of generic queries to retrieve websites from a search

engine that are likely to have a mention of the facts

searched for. When retrieving the top eight results, 95%

of the facts were found. All further evaluations for the

fact extraction rely on the test set that was gained by

taking the top eight results from Yahoo! for all queries.

Evaluation of Extraction Structure Trust Learning
Figure 3 shows the learned trust values for the four

extraction structures after every iteration of the learning

loop. The dashed lines visualize the manually deter-

mined precision values in the test set for each extrac-

tion structure and the solid lines are the automatically

calculated trust values from the learning loop. All trust

values were initialized with 0.5. The graphic shows that

the free text (red) and table (green) extraction struc-

ture do not change very much after the first forty it-

erations. The phrase and the colon pattern extraction

structure however, seem to drop an raise quickly even

after 40 iterations. This behavior is due to the occur-

rences of these structures. The “found” value for these

two structures was lower than for free text and table,

which means that the extraction structure occurs more

rarely and therefore it takes longer to gain a stable trust

value. The loop did not stop before all iterations have

been performed since the trust values did not converge

so far. 172 iterations was the maximum for the test set

with 255 facts since not all facts have been found. After

172 iterations, three of the four extraction structures got

an automatically assigned trust value that is in a 4%

margin to the “correct” precision value for the extrac-

tion structure in the test set. The highest discrepancy

can be seen with phrase that is 5.2% away from the

correct trust value. This again can be explained by the

low occurrence number, only every fourth fact can be

found by the phrase extraction structure. The black line

in Figure 3 depicts the overall precision of WebKnox.

It is shown that the precision does in fact increase as

the extraction structures get trust values closer to their

real precision. Through the learning loop, an overall

precision gain of 7.4% is gained, recall is also affected

positively with an increase of about 7%.

Cross Validation When comparing the extraction

precision for the numeric data type we find that (both

with and without crossvalidation) WebKnox found 143

of the 145 numeric facts in the test set. The learning

loop was performed 172 times in both cases, until no

more iteration was possible. Without cross validation

63.19% of the extracted numeric values were correct.

Using cross validation showed a gain in precision of

almost 7% to 70.13%. The difference between the

baseline and WebKnox for numeric fact values now

increases to over 25% in precision.

Overall Fact Extraction Performance Figure 4

shows the comparison between the baseline and the

fact extraction process of WebKnox for all concepts of

the test set. The evaluated fact extraction process used

33



Figure 3: Evaluation of the self supervised learning

loop for the extraction structure trust.

Equation 7 (with cross validation) and stopped after

172 iterations to weight the extraction structures and

apply cross validation for numeric facts. The measures

in the figure are pr for precision and re for recall. There

are two bars for each measure and concept, where the

left is the one for the baseline and the darker right

one is the measured value for WebKnox. In five of

the six concepts, WebKnox reaches a higher precision

and recall than the baseline. For the car and notebook

concept it does not perform considerably better than

the baseline. That is because the normalization step

sometimes fails to normalize the numbers correctly.

In the car and notebook domain most of the facts are

numeric facts and several times there is no unit given

with the fact. Overall, the system achieves precision

and recall over 70% compared with the baseline of just

approximately 52%.

5 Conclusion and Further Work
We showed that we can increase the fact extraction per-

formance by searching facts in different formats and

structures of HTML documents. Furthermore, we intro-

duced an algorithm that can learn a trust value for those

structures in a self supervised manner. We are able to

assign a trust value to the extracted facts based on a

source trust and the trust for the extraction structures.

Further work needs to be done especially:

1. Determining how well the trust value indicates for

the end user the reliability of the automatic extrac-

tion.

2. Finding further criteria to calculate the source trust

more accurately for the extraction process.

3. Investigating in further domain independent for-

mats and structures that are used to represent facts

on websites.

4. Automate identification and extraction of entities

(extending the work of Vercoustre et al. [5] on en-

tity ranking from Wikipedia).

Figure 4: Evaluation of the WebKnox system against

the baseline across six concepts.

References
[1] Michele Banko, Micheal J. Cafarella, Stephen Soderland,

Matt Broadhead and Oren Etzioni. Open Information

Extraction from the Web. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence,

pages 2670–2676, 2007.

[2] Chia-Hui Chang, Mohammed Kayed, Mohed R. Girgis

and Khaled F. Shaalan. A Survey of Web Information

Extraction Systems. IEEE Transactions on Knowledge
and Data Engineering, Volume 18, Number 10, pages

1411–1428, 2006.

[3] William W. Cohen, Matthew Hurst and Lee S. Jensen. A

flexible learning system for wrapping tables and lists in

HTML documents. In Proceedings of the 11th Interna-
tional Conference on World Wide Web, pages 232–241.

ACM, 2002.

[4] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley

Kok, Ana-Maria Popescu, Tal Shaked, Stephen Soder-

land, Daniel S. Weld and Alexander Yates. Web-scale

information extraction in knowitall: (preliminary results).

In WWW ’04: Proceedings of the 13th International
Conference on World Wide Web, pages 100–110. ACM,

2004.

[5] Anne-Marie Vercoustre, James A. Thom and Jovan Pe-

hcevski. Entity ranking in Wikipedia. In SAC ’08:
Proceedings of the 2008 ACM symposium on Applied
computing, pages 1101–1106. ACM, 2008.

[6] Alexander Yates. Information Extraction from the Web:
Techniques and Applications. Ph.D. thesis, University of

Washington, Computer Science and Engineering, 2007.

[7] Shubin Zhao and Jonathan Betz. Corroborate and Learn

Facts from the Web. In KDD ’07: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge
discovery and data mining, pages 995–1003. ACM, 2007.

34




