
Extraction of Named Entities from Tables in Gene Mutation Literature

Wern Wong2, David Martinez1,2, Lawrence Cavedon1

1NICTA Victoria Research Laboratory
2Dept of Computer Science and Software Engineering

The University of Melbourne
{wongwl,davidm,lcavedon}@csse.unimelb.edu.au

Abstract Information extraction and text mining
are receiving growing attention as useful techniques
for addressing the crucial information bottleneck in
the biomedical domain. We investigate the challenge
of extracting information about genetic mutations
from tables, an important source of information in
scientific papers. We use various machine learning
algorithms and feature sets, and evaluate performance
in extracting fields associated with an existing hand-
created database of mutations. We then show how
this technique can be leveraged to improve on existing
named entity detection systems for mutations.

1 Introduction and Background
Biomedical science is a large, fast-paced and rapidly
growing field. The volume of papers being written
every year presents a serious bottleneck to researchers
in the field, both in terms of keeping pace with
discoveries and with checking for connections to
be made with observations made in laboratories. A
large amount of biomedical researchers’ and workers’
time is spent searching and reading the literature for
information salient to a particular experimental result
or observation in a clinical or diagnostic laboratory.
Information extraction and text mining techniques

are garnering much interest in the biomedical space due
to their potential for alleviating the information bottle-
neck experienced by researchers and clinical workers
(e.g. [2]). We are interested in applying such meth-
ods to aiding the construction of databases of biomedi-
cal information, in particular information about genetic
mutations. Such databases are currently constructed by
hand: a long, involved, time-consuming and human-
intensive process. Each paper considered for inclusion
in the database must be read, the interesting data iden-
tified and then entered by hand into a database.1
In this paper, we focus on the task of extracting

information from tables in biomedical research
papers. Tables present a succinct and information-rich

1Karamis et al [4] illustrate how even simple tools can have an
impact on improving the database-curation process.
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format for providing information, and are particularly
important when reporting results in biological and
medical research papers: the important results in such
papers may be reported only in tabular form and not
in the main text at all. Table processing presents its
own challenges, especially that of detecting tables in
text and dealing with structure—see [8] for a survey
on table recognition and [3] for a discussion on
processing tables in web documents. While interesting
approaches to detecting and processing tables have
been used in various applications—e.g. Wei et al [5]
perform question-answering over tables extracted from
financial documents—we know of no previous attempt
to process tables in biomedical documents.
Our extraction task is grounded in the specific

context of the Mismatch Repair (MMR) Database
compiled at the Memorial University of Newfoundland
[7]—a database of known genetic mutations related to
hereditary non-polyposis colorectal cancer (HNPCC),
a hereditary form of bowel cancer. The MMR Database
contains information on genetic mutations known to
be related to HNPCC, along with links to the research
papers from which the database has been constructed.2
From the database and its links to papers, we were
able to construct a collection of tables related to
HNPCC mutations, and then use the MMR database
records themselves as a gold standard for evaluating
our techniques. As at May 2008, the MMR database
contained a total of 5,491 records on mutations that
occur on any one of four genes that have been identified
as related to colon cancer. An example record from the
MMR database is the following:

MLH1 | Exon13 | c.1491delG | Yamamoto et al. | 9500462

Respectively, this record contains: the gene; exon;
mutation; citation of the paper the information was
sourced from;3 and the paper’s PubMedID (PubMedID
is a unique identifier assigned to papers whose abstract
is contained in the MEDLINE collection). These
fields are important because they contain information

2I.e. a team of geneticists manually trawled the biomedical
literature for information on HNPCC-related mutation information,
and added links to any papers relevant to those mutations in the
context of HNPCC.

3This field has been abbreviated. We have also omitted fields such
as “internal id”.
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researchers are directly interested in (gene, exon,
mutation) and the paper said information was found
in. Note that if a gene/mutation pair is referenced
in multiple papers, then there are correspondingly
multiple entries in the database. Conversely, if a single
paper mentions multiple (relevant) genes, then that
paper is mentioned in multiple database records. Our
goal in this paper is to work towards automatic aids for
the curation of this database.

2 Experimental Setting
In this section, we describe the process of creating our
experimental dataset and the task design.

2.1 Creating the Dataset
Our collection of tables was extracted via the MMR
database, leveraging the MEDLINE collection of
biomedical abstracts. We first collected all information
available in the hand-curated MMR records, obtaining
a total of 5,491 mutations linked to 719 distinct
PubMedIDs4. We next used a crawler to retrieve
the corresponding full-text articles (identified by
PubMedIDs stored in the MMR records) by following
links from the PubMed interface, and downloaded
those papers that had a full-text HTML version, and
which contained at least one content table. Tables
were then extracted from the full-text HTML files. It
is worth noting that the tables were already present
as links to separate HTML files rather than being
presented as inline tables, making this process easier.
Papers that did not contain tables in HTML format
were eliminated.
Our final collection consisted of 70 papers from the

original 719 PubMedIDs. The articles are linked to
784 MMR records (mutations), which constitutes our
gold standard hand-curated annotation. The collection
contains 197 tables in all.5
The tables in the collection were then pre-processed

into a form that more readily allowed experimentation.
The tables were split into three parts: column headers,
row headers, and data cells. This was done based on
the HTML formatting, which was consistent through-
out the data set as the tables were automatically gener-
ated: cells were replicated when they spanned multiple
rows or columns; img tags were replaced by the alter-
nate text (when available); and hr tags were used to
separate out column headers from the cells themselves.
Row headers were detected by checking if the top left
cell of the table was blank, a pattern which occurred
in all row-major tables. We acknowledge that this pro-
cessing may be specific to the vagaries of the particular
format of the HTML generation used by PubMed (from
which we sourced the tables). However, our whole task
is specific to this domain; further, our focus is on the

4Data was downloaded from the web interface in May 2008.
5This collection could be increased in size by more putting more

effort into retrieving documents linked to MMR records.

data extraction task rather than the actual detection of
row/column headers.

2.2 Task Design
In order to extract mutations from tables, we first per-
formed classification of full columns/rows into relevant
entities. Since the content of a column (or row, depend-
ing on whether the table was row- or column-oriented)
tends to be homogeneous, this allowed us to build clas-
sifiers that can identify full vectors of relevant entities
in a single step. We refer to this task as table vector
classification.
We identified the following entities as relevant:

Gene, Exon, Mutation, Codon, and Statistic. The first
four were chosen directly from the MMR Database.
We decided to include “Statistic” after inspecting
the tabular dataset, since we found that this provides
relevant information about the importance of a given
mutation. From the five entities, Mutation is the most
informative for our final information extraction goal.
The next step was to hand-annotate the headers of

the 197 tables in our collection by using the five entities
and the class “Other” as the tagset. Some headers be-
longed to more that one class, because the entities were
collapsed into a single field of the table.
We performed two tasks: vector classification, and

mutation extraction. The evaluation for the vector clas-
sification step was done using precision, recall and f-
score, micro-averaged among the classes. For the ma-
chine learning (ML) algorithms, we used stratified 10-
fold cross-validation. For mutation extraction we focus
on the mutation class, and produce precision and recall
against the subset of the hand-curated MMR database.

3 Table Vector Classification
We describe here heuristic andML approaches to vector
classification, along with an analysis of their perfor-
mance.

3.1 Heuristic Approach
As a baseline method, we approached the task of
classifying headers by matching the header string to
the names of the classes in a case-insensitive manner.
When the class name was found as a substring of the
header, the class would be assigned to it. For example,
a header string such as “Target Mutation” would be
assigned the class “Mutation”. Some headers had
multiple annotations (e.g. “Gene/Exon”).
For better recall, we also matched synonyms

for the class “Mutation” (the terms “Variation” and
“Missense”) and the class “Statistic” (the terms “No.”,
“Number” and “%”). For the remaining classes we did
not identify other obvious synonyms.
Results are shown in Table 1. Precision was very

low for the “Mutation” class, illustrating that different
types of information are provided under this heading;
e.g. the heading “Mutation detected” above a “Gene”
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Class Precision Recall FScore
Gene 0.537 0.620 0.575
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.283 0.301 0.292
Statistic 0.911 0.324 0.478
Other 0.581 0.903 0.707
Micro Avg. 0.693 0.614 0.651

Table 1: Naive Baseline results across the different
classes and micro-averaged

Class Precision Recall FScore
Gene 0.537 0.611 0.571
Exon 0.762 0.615 0.681
Codon 0.850 0.654 0.739
Mutation 0.600 0.452 0.515
Statistic 0.911 0.340 0.495
Other 0.579 0.910 0.708
Micro Avg. 0.715 0.633 0.672

Table 2: Results integrating MutationFinder across the
different classes and micro-averaged

vector. Recall was low for most classes, suggesting that
more sophisticated approaches are required.
Our second step was to build a more informed clas-

sifier for the ”Mutation” class. We applied the muta-
tion NER tool MutationFinder [1] to the text in cells
to identify which table-vectors contained at least one
mutation mention. Any such vectors were classified
as mutations. The results are shown in Table 2. This
approach caused the “Mutation” results to improve, but
the overall f-scores leave room for improvement.

3.2 Machine Learning Methods
For the ML experiments we used the Weka [6] toolkit,
as it contains a wide selection of in-built algorithms.
As a baseline, we applied the majority class from the
training data to all test instances. We applied the fol-
lowingML algorithms fromWeka6: Naive Bayes (NB),
Support Vector Machines (SVM), Propositional Rule
Learner (JRip), and Decision Trees (J48).
In order to define our feature sets, we used the text

in both the headers and cells of the tables. Other sources
of information, such as captions or the running text re-
ferring to the table where not employed at this stage,
but may also provide valuable information. We used
four feature sets:
• Basic (Basic): header string, the average and me-
dian cell lengths, and a binary feature indicating
whether the data in the cells was numeric;

• Cell Bag-of-Words (C bow): Bag of words over
the tokens in the table cells;

• Header Bag-of-Words (H bow): Bag of words
over the tokens in the header strings;

• Header + Cell Bag-of-Words (HC bow): Bags
of words formed by the tokens in headers and cells,
represented as different feature types.

6We applied a number of other ML algorithms as well, but these
showed significantly lesser performance.

Algorithm
Feature Sets

Basic C bow H bow HC bow
Maj. Class 0.288
NB 0.614 0.454 0.678 0.581
SVM 0.717 0.599 0.839 0.816
JRip 0.564 0.493 0.790 0.749
J48 0.288 0.532 0.793 0.782

Table 3: Micro-Averaged FScores for ML algorithms.
The best results per column are given in bold.

Class Precision Recall FScore
Gene 0.778 0.737 0.757
Exon 0.786 0.707 0.745
Codon 0.833 0.882 0.857
Mutation 0.656 0.679 0.667
Statistic 0.919 0.853 0.885
Other 0.820 0.884 0.850
Micro Avg 0.839 0.841 0.839

Table 4: Results for SVM and the feature set H bow per
class and micro-averaged.

The micro-averaged results of the different learning
methods and feature sets are shown in Table 3. Re-
garding the feature sets, we can see that the best per-
formance is obtained by using the headers as bag-of-
words, while the content of the cells seems to be too
sparse to guide the learning methods. SVM is clearly
the best algorithm for this dataset, with JRip and J48
following, and NB performingworst of the four in most
cases. Only for the basic feature set (with very few
features) does NB outperform JRip and J48.
Overall, the results show that the ML approach is

significantly superior to the baselines when relying on
the header bag of words7; SVM is able to reach a high
f-score of 83.9% in predicting the relevant entities.
We break down the results per class in Table 4, us-

ing the outputs from SVM and feature-set H bow. We
can see that all classes improve over the heuristic base-
lines. There is a big increase for the classes “Gene” and
“Statistic”, and all classes except mutation are above
70% f-score. “Mutation” is the most difficult class to
predict, but it still reaches 66.7% f-score, which can be
helpful for some tasks, as we explore in Section 4.

4 Mutation Extraction
We applied the results of our classifier to a real-world
application: the detection of mutations in the literature
for the MMR Database project. Table vector classifi-
cation allows us to extract lists of candidate mutation
names from tables to be added to the database. In order
to test the viability of this approach, we measured the
precision and recall of the system in detecting the ex-
isting hand-curated mutations in MMR. Recall is more
important in this setting, since it shows the proportion
of mutation mentions that we are able to obtain with our
technique. Precision will give an indication of the rate
of false positives, but note that we also consider as false
positives those valid mutations that were not interesting

7As shown by a paired t-test at 99% confidence.
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System Precision Recall
MF (full text) 0.01 (6 / 438) 0.01 (4 / 717)
Table Vector classifier 0.09 (153 / 1702) 0.21 (153 / 717)
Gold standard heads 0.11 (198 / 1847) 0.28 (198 / 717)

Table 5: Mutation detection results, Table Vector clas-
sifier in bold.

for MMR, and therefore the reported precision will be
artificially low.
As state-of-the-art mutation detection system, we

apply MutationFinder (MF) [1] to the full text (includ-
ing tables) of the journal collection. This allows us to
compare the results of our table-processing approach
over an existing tool that parses the full text.
The evaluation results are shown in Table 5.8 We

can see that the goldstandard table vector annotation
retrieves 28% of the mutations, at a precision of 11%.
This means that by looking only at the tables we have
an upper-bound of 28% on the percentage of relevant
mutations that we can extract. In comparison, MF is
only able to retrieve 1% of the mutations by looking at
full articles. This happens because MF targets muta-
tion mentions that follow a specific nomenclature, and
the mentions that it is able to detect are not the ones
covered in the MMR Database. Finally, our automatic
table vector classifier is able to retrieve 21% of the gold
standard mutations at a precision of 9%, which is 75%
of the upperbound.
The precision figures are low for the goldstandard

and table vector classifier. The reason for this is that we
do not discriminate automatically for mutations of in-
terest for the MMR Database, and valid mutation men-
tions are often classified as negative. All in all, the
vector classifier discriminates 1,702 mutation cells out
of a total of 27,700 unique cells in the collection, and it
effectively identifies 153 out of the 198 relevant muta-
tions present in the tabular data.
Finally, after the evaluation process we observed

that many false mutation candidates could be removed
by discarding those that do not contain two consecutive
digits or any of the following n-grams: “c.”, “p.”, ’>’,
“del”, “ins”, “dup”. This heuristic raises the precision
of the system to 15.5% (153 true positives out of 989)
with no cost in recall, which would result in greater
saved time for database curators in a practical setting.

5 Discussion
Our preliminary results on the task of identifying rel-
evant entities from gene mutation literature show that
targeting tables can be a fruitful approach for text min-
ing. By relying on ML methods and simple bag-of-
words features, we were able to achieve good perfor-
mance over a number of selected entities, well above
header word-matching baselines. This allowed us to
identify lists of mentions of relevant entities with min-

8Because of the different mutation nomenclature formats used,
comparison to gold standard required manual checking.

imal effort, reaching 21% of recall over a hand-curated
database.
Another advantage of our approach is that the an-

notation of examples for training and evaluation is con-
siderably easier, since many entities can be annotated
in a single step. This opens the way to faster annotation
of other entities of interest in the biomedical domain,
which can present a wide variety of forms and non-
standard terminology. However, since a table vector of
homogeneous information may include representatives
of the heterogeneous nomenclature schemes, classifica-
tion of a whole column or row potentially helps nullify
the effect of the terminological variability.
For future work, we plan to study different types of

features for better representing the entities targeted in
this work. Especially for mutation mentions, we ob-
served that the presence of certain ngrams (e.g. ”del”)
can be a strong indicator for this class. Another goal
is to increase the size of our dataset of articles by im-
proving our retrieval process, and by hand-annotating
the retrieved table vectors for further experimentation.
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