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Abstract Rank-Biased Precision (RBP) is a retrieval
evaluation metric that assigns an effectiveness score to
a ranking by computing a geometricly weighted sum of
document relevance values, with the monotonicly de-
creasing weights in the geometric distribution deter-
mined via a persistence parameter p. Despite exhibit-
ing various advantageous traits over well known exist-
ing measures such as Average Precision, RBP has the
drawback of requiring the designer of any experiment
to choose a value for p. Here we present a method
that allows retrieval systems evaluated using RBP with
different p values to be compared. The proposed ap-
proach involves calculating two critical bounding rel-
evance vectors for the original RBP score, and using
those vectors to calculate the range of possible RBP
scores for any other value of p. Those bounds may
then be sufficient to allow the outright superiority of one
system over the other to be established. In addition, the
process can be modified to handle any RBP residuals
associated with either of the two systems. We believe
the adoption of the comparison process described in
this paper will greatly aid the uptake of RBP in eval-
uation experiments.

Keywords Rank-Biased Precision, Evaluation, Sys-
tem Comparison

1 Introduction
Effectiveness evaluation focuses on allocating scores
to retrieval systems, allowing researchers to compare
pairs of systems, and argue that one or the other
has the better effectiveness. When using a non-
parameterized metric, systems are simply compared
by the effectiveness score computed for each system’s
set of retrieved relevance vectors. However, the task
of comparing systems is complicated when adjustable
effectiveness-scoring parameters are introduced, as it
is difficult (or simply meaningless) to compare systems
evaluated using different parameter values. This
presents a problem for measures where there are no
conventionally agreed values for those parameters, and
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results in a lack of any clear baselines being established
as the basis for future improvements.
Unfortunately, many popular metrics such as

NDCG [Järvelin and Kekäläinen, 2002] and BPref
[Buckley and Voorhees, 2004] make use of such
parameters, and it is often the case that the parameter
needs to be adjusted to the experimental context or
be chosen based on prior knowledge of the dataset
properties. This problem also extends to metrics
such as Average Precision, for which the depth of the
evaluation is clearly a parameter that must be set by
the experimental designer, and might play a large part
in determining the numeric value of the scores that are
achieved.
Rank-Biased Precision (RBP) [Moffat and Zobel,

2009] is an evaluation measure which assigns relevance
weights based on the geometric distribution for a given
parameter 0 ≤ p < 1 or persistence, where a smaller p
value places greater emphasis on documents that appear
early in the ranking, and a larger p spreads the weight
further down the document ranking, but in both cases
with all documents in the ranking contributing to the
final score.
Despite the merits of RBP, there is no single “best” p

that can be used for experimentation, as p is by its very
nature something that is varied across different types
of experiment. Here we present a method to compare
RBP scores computed using differing p values, based
on the bounding binary relevance vectors obtained by
inverting the RBP score calculation.
Our methodology uses a three step process:

1. For a given p and RBP score, calculate the lexi-
cographically greatest and least relevance vectors
which might have generated that score (at some
floating point precision).

2. Using these two vectors, calculate the range of
possible RBP values for the target p value.

3. Finally, based on the target RBP value, we can
deduce whether one RBP score is outright greater
than the other.

Additionally, this method can be modified to work
for RBP values with non-zero residuals, or known
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imprecision. Our investigation into these properties
shows that changing p results in interesting behaviors
in RBP based on the source values, and that it is
possible for outright comparisons to be performed on
two RBP scores computed using different parameters.
Our outcomes suggest that RBP can be employed
more extensively in evaluation experiments than it is
currently, with reduced concerns over incomparable
results between researchers.
Section 2 introduces the RBP metric and other re-

lated work in the general research area. Section 3 de-
scribes the method to generate relevance vectors from
an initial RBP score and associated p value, in partic-
ular the process to obtain the lexicographically great-
est and least relevance vectors. Section 4 demonstrates
how to obtain a range of RBP values using these two
vectors and the interpretation needed to form a clear
system comparison. Section 5 presents a modified pro-
cess for handling the presence of RBP residuals. Sec-
tion 6 examines some peculiarities and limitations of
the comparison process. Finally, Section 7 concludes
the paper and discusses possibilities for future investi-
gation.

2 RBP and related metrics
Rank-Biased Precision (RBP) is based on the monoton-
ically decreasing values in a geometric sequence. It has
the form:

RBP(R, p) = (1 − p)
|R|∑
i=1

rip
i−1

where p is a abstraction of the user’s searching per-
sistence, expressed as a parameter between 0 and 1,
R represents the relevance vector to be evaluated, and
ri indicates the relevance of the document ranked in
position i within the ranking [Moffat and Zobel, 2009].
Unlike some other metrics, RBP does not utilize the
global number of relevant documents for the query and
is formulated in such a manner that a relevant docu-
ment at any given rank contributes a set value to the
overall score, meaning that potential contributions from
unjudged documents can also be calculated and incor-
porated as they become available. Consequently, RBP
is always bounded between zero and one, with a score
of one only achievable when the length of an “every
document is relevant” ranking vector approaches infin-
ity.
As an example of how RBP is calculated, suppose

that a user has persistence of p = 0.5, meaning that
there is a 50:50 chance that the user will progress from
one document in the ranking to the next. If a system
returns the relevance vector R = {11010001}, where 1
denotes a relevant document and 0 denotes an irrelevant
document, then the RBP of this system is computed as:
(1− 0.5)× (0.50 + 0.51 + 0.53 + 0.57) = 0.816.
Figure 1 depicts the effect of three different values

of p on the RBP contribution for a set of ranks. As p in-
creases, the contribution from early ranked documents
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Figure 1: Contribution of each rank towards the RBP total for
three values of p. Increasing the value of p shifts the emphasis
to documents further down the ranked list.

decreases, and later ranked documents increase their
weight in the final RBP score. The specific properties of
the geometric sequence imply that it is possible to de-
termine the ranking depth required when evaluating to
a given accuracy for any predetermined value of p. For
example, when p = 0.5 the sum of contributions from
rank 12 onwards is 4.88× 10−4. Therefore, when eval-
uating to a precision of three decimal places (0.001), it
is possible to do so using relevance judgments up to just
rank 11 (and no further), as 4.88× 10−4 rounds to less
than 0.001. We make use of this property later.
Previous studies [Park and Zhang, 2007] suggest

that for web search a p value of 0.8 is an appropriate
value. In practice, values as high as 0.95 are used
in experiments with higher pooling depths such as
TREC [Voorhees and Harman, 2000], matching the
deep evaluations provided by Mean Average Precision
(MAP) and NDCG. Moffat and Zobel [2009] argue that
this flexibility in choosing p works to RBP’s advantage,
allowing it to (mimic as required) the characteristics of
other common evaluation metrics, such as Reciprocal
rank, Precision@10, and so on.
Other recent studies have also examined RBP. Park

and Zhang [2007] describe a method for selecting
p based on session and click-through data from a
large Microsoft query log. Moffat et al. [2007]
investigate methods for reducing the number of
relevance judgments required when performing system
comparisons, and evaluated their methods in the
context of RBP. Webber et al. [2008] describe a
process for standardization using existing experimental
results to modify evaluation metrics to shift reliance
away from collection specific parameters. Compared
to other evaluation metrics, Discounted Cumulative
Gain (DCG) [Järvelin and Kekäläinen, 2002] bears
many similarities to RBP, although overall DCG
scores are unbounded as ranked lists grow longer, and
the approach employed in Normalized Discounted
Cumulative Gain (NDCG) requires prior knowledge
of the relevance data. The BPref metric [Buckley and
Voorhees, 2004] and the Q-measure metric [Sakai,
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2004] are examples of more complex measures that
make use of query-specific relevance information and
the sequencing of relevant documents within the result
list being evaluated.
Like all other metrics, RBP scores are easily compa-

rable when the systems in question use the same param-
eter values, or supply the original rankings (runs), in
which case scores using new parameters can be calcu-
lated. However, since not all experiments utilize iden-
tical parameter values, and published results typically
only include summary data rather than details of the
runs, alternative methods are required to compare sys-
tems evaluated using different p values.

3 Generating relevance vectors
As mentioned previously, it is possible to compare RBP
scores computed using different p values as long as the
original relevance vector is available. Our key contribu-
tion is the observation that it is possible to reconstruct a
set of relevance vectors which could have given rise to
any given RBP score.
Since the contribution of a relevant document

at each rank is fixed for a given p, we can take a
straightforward constraint-based approach to determine
the values of ranks in the relevance vector. Given a
retrieval system, with RBP score S obtained using
persistence p, our goal of generating relevance vectors
can be formally defined as calculating some set of
relevance vectors R, such that each relevance vector
R = {r1, r2 · · · } ∈ R satisfies the equation:

RBP(R, p) = S .

In our scenario of generating vectors R that satisfy S

using p, we have no knowledge of any ri ∈ R and it is
our goal to determine their values. We now define the
following constraints:

Constraint 1 Given R and p where rj is determined
for 0 < j < i and RBP (R, p) < S, if setting ri =
1 causes the calculated RBP (R, p) to become greater
than S, then either ri = 0, or one of the earlier rj

values is incorrect.

Constraint 2 Given R and p where rj is determined
for 0 < j < i and RBP (R, p) < S, if setting rk = 1
for k > i still results in RBP (R, p) < S, then either
ri = 1, or one of the earlier rj values is incorrect.

An example demonstrates the use of the two constraints
when deriving the required relevance vector. Suppose
that the target score is S = 0.4, that p = 0.8, and
that R = {1 0 0 0 1 ? ? ?}, where ? represents a
ranking with some unknown values. In this configu-
ration, RBP (R, p) = 0.2812. If the options for r6

are then considered, setting it to 1 does not break con-
straint 1, but setting r6 = 0 breaks constraint 2, be-
cause the remaining unknown document judgments can
only contribute at most 0.0943, which is not enough

10−2 10−4 10−8

p = 0.5 8 15 28
p = 0.7 15 28 54
p = 0.8 24 45 86
p = 0.9 51 94 182
p = 0.95 104 194 373
p = 0.99 528 986 1,001

Table 1: Number of significant ranks at given floating point
precision as a function of p.

to allow the target of S = 0.4 to be reached (because
0.2812 + 0.0943 < 0.4). Therefore r6 = 1, giving
R = {1 0 0 0 1 1 ? ?}. The search can then continue.
To formalize this process, let con (i) represent the

contribution for a relevant document at rank i. Then,
assuming binary relevance and some fixed p:

con (i) = p
i−1 × (1− p) ,

and the contributions of all remaining documents from
rank i onwards can be represented as:

rem (i) =
|R|∑

k=i+1

con (k) .

The constraints can now be expressed as:

ri ∈ R =
{

0 if acc (i) + con (i) > S

1 if acc (i) + rem (i) < S

where:

acc (i) =
{

0 if i = 1∑i−1
j=1 rj · con (j) otherwise

In this approach, we evaluate the values of ri se-
quentially by following the constraints, starting at r1.
Technically R can reach lengths up to infinity, but we
bound this value by specifying a precision at which we
stop the calculation. Hence, |R| is simply the rank at
which the rounded value of rem (i) becomes less than
the precision. Table 1 depicts the number of results
which are significant in terms of precision for various
p and precision values.
For cases when neither constraint is satisfied, there

is a choice. To obtain the full set of vectorsR, both pos-
sible values for ri would be made at these choicepoints,
and the search would then continue along both paths.
However, we will take special note of two possible R

vectors with useful properties: the one with the most
relevant documents at the top of the ranking, obtained
by always assigning ri = 1 at choicepoints and denoted
as RG; and the one with the most irrelevant documents
at the top of the ranking, obtained by always assigning
ri = 0 at choicepoints, denoted as RL.
Both RG and RL are useful in that they depict

the extremes of possible relevance combinations,
being respectively the lexicographically greatest and
lexicographically least. For our proposed method
of RBP comparisons, simply making use of these
two vectors is sufficient, meaning there is no need to
generate all ofR.
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Figure 2: Changes in RBP value for RG and RL vectors for
varying p values. As p increases, greater emphasis is placed
on later ranked documents, pushing up the score assigned to
the RL vector, and decreasing the value assigned to the RG

vector. When p decreases, the converse is true. This figure
illustrate a case in which RL and RG are divergent.

4 Comparing RBP values
The generated relevance vectors then allow calculation
of the (range of) RBP scores that might have arisen if a
different value of p had been used.

4.1 Bounding RBP scores for varying p

For a given initial p and score S, upper and lower limits
on the RBP score can be computed for all other values
of p, using the RL and RG vectors. These two values
represent the extremes that can arise from any other
members of R, and yield the largest variations in RBP
score as p is varied.
Recall that a floating point precision was specified

to limit the length of the relevance vectors, with the
implication that for a fixed precision and RBP score,
a higher p′ value (where p′ > p) requires more ranks to
be fully represented. This creates a undesirable situa-
tion where ri of significant ranks at p′ are unavailable,
meaning we cannot use the RG and RL vectors in their
current state as |R| is too short to fully represent the
RBP score at the required precision.
However, as we are primarily interested in the up-

per and lower bounds for possible RBP values, des-
ignating ri = 1 with RG and ri = 0 with RL for
the extended rank positions in p′ provides the greatest
and least possible values for RBP respectively. When
moving to a lower p value, the number of significant
ranks decreases, meaning that ri = 0 is appropriate for
the extended ranks.
Figure 2 shows a representation of the range of pos-

sible RBP values obtainable from an initial p and S

pairing. Intuitively, the range of possible RBP scores
expands as p increases. All possible values in the range
[0, 1] eventually become obtainable as p asymptotically
approaches 1. That is, as the effect of later ranked
documents is accentuated, the score from theRL vector
increases, and the score from the RG vector decreases.

On the other hand, when the value of p approaches
0, greater emphasis is placed on early ranked docu-
ments, until only the first ranked document is significant
in the RBP computation. Indeed, below p = 0.5 the
first document in the ranking dominates the sum of all
of the other rank positions. This property allows us to
easily predict the behavior of the RG andRL scores for
smaller values of p: as p tends to zero, if r1 = 1 in
RL, both scores converge to 1. Otherwise, if r1 = 0
in RG, both RL and RG scores will converge to 0.
Furthermore, given the initial p and S, we can easily
determine the value r1, as con (1) = (1− p)× p1−1 =
(1 − p) and rem (1) = 1 − con (1) = p. Therefore, if
S ≤ (1−p), r1 must equal 0. Conversely, if S ≥ p, then
r1 must equal 1. Figure 3 depicts this occurrence for
nine different combinations of p and S. Note that one
of the nine combinations in the matrix of possibilities is
infeasible, and has not been plotted.

4.2 System comparison with RBP
We now have a process to handle our experimental sce-
nario: suppose we have two retrieval systems (A & B)
which executed the same query on identical datasets.
The author of system A reported a RBP score of SA

calculated using pA. Similarly, the author of system B
reported a RBP score of SB calculated using pB > pA.
We need to determine, if possible, whether system A
outperforms system B on that query or vice versa, using
one or the other of the two values of p. Using the
methods outlined above, we can accomplish this task
by generating theRG andRL vectors of one system and
comparing the range of possible RBP scores to those of
the other at that system’s p.
Although we have the choice of generating

relevance vectors for either system (and thus attempting
the comparison at either of the two values of p), it is
prudent to use the system with the higher p value, and
compare the range of RBP scores to the system with the
lower p value. This is because moving from a higher p
to a lower p places greater emphasis on contributions
of early ranks, and later ranks are more likely to be
uncalculated due to initial precision specification. The
same effect was noted earlier when recalculating RBP
for higher values of p.
With these considerations in mind, we now have

a complete process for comparing systems evaluated
using RBP with different p values:

1. For evaluation systems A and B, assuming pB >

pA, generate RG and RL using pB and SB at the
required level of accuracy.

2. For p < pB , crop |R| to the significant ranks at the
given level of accuracy. Calculate RBP (RG, p)
and RBP (RL, p).

3. For p > pB , append ri = 1 to RG and ri = 0 to
RL until the significant rank at the given level of
accuracy is reached. Calculate RBP (RG, p) and
RBP (RL, p).
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Figure 3: Convergence behavior using combinations p and S (RBP) values drawn from {0.2, 0.5, 0.8}. The bottom left corner
shows p = 0.2, S = 0.2, and the top right corner shows p = 0.8, S = 0.8. Intersections occur at (p, S) in each graph,
corresponding to the supplied arguments for generating RG and RL. The full divergent range of RBP scores in [0, 1] becomes
obtainable for values of p tending to 1, when the unspecified tail of the ranking has the power to completely change the score.
Convergence of RG and RL for small values of p can be easily validated with be comparing p and S: both will converge to 1
if S ≥ p or both will converge to zero if S ≤ (1− p). The graph of p = 0.2, S = 0.5 is missing because a score of 0.5 cannot
arise when p = 0.2, as all valid RBP scores must be either greater than 0.8, or less than 0.2. Note that all of these bounds are
based solely on the S and p values. If the actual ranking is available, RBP with a reduced p can always be calculated to at least
the same accuracy as it was using the initial value of p.
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4. System B outperforms system A at p = pA if and
only if SA < RBP (RL, pA).

5. System A outperforms system B at pA if and only
if SA > RBP (RG, pA).

6. Otherwise, there is no clear outcome as to which
system is superior.

The first two outcomes are fairly straightforward: if
the RBP score of system A fails to reach lowest possible
RBP score of system B, then system A is inferior. The
second outcome is simply the mirrored case. However,
when the RBP of system A lies in the range of system B,
there is no clear evidence of superiority either way: out
of all possible relevance vectors generated from system
B (which fall between the RBP bounds marked out by
system B’s RG and RL), a non-empty subset of those
vectors results in a higher RBP score at pA, while others
result in a lower score.

5 Integrating RBP residuals
Although the proposed method is generally applicable,
retrieval experiments are often run with limited rele-
vance judgments due to resource constraints, meaning
that evaluation with exhaustive relevance judgments is
impossible. In the case of RBP, this uncertainty is han-
dled by summing the contributions of all unjudged doc-
uments to form an error bound, or residual [Moffat and
Zobel, 2009]. The RBP residual (ε) can be described
as:

ε(R, p) = (1− p)
∞∑

i=1

unjudged(i) · pi−1

where unjudged(i) = 1 if and only if ri is unknown.
In this sense, the RBP score S of a ranking is the

lower bound of RBP (if all unjudged documents are
irrelevant), and S + ε gives the upper bound, achieved
if all unjudged documents are relevant. Ideally, both S

and ε, along with the p employed, are reported when
effectiveness evaluation results are being disseminated.

5.1 Relevance vectors with residuals
Residuals present a challenge when reconstructing the
relevance vectors used, in that it is no longer valid to se-
lect ri freely when choicepoints are encountered. This
is because unlike previously discussed, the generated
relevance vectorRmust be able to produceS+ε should
some subset of ri = 0 positions be switched to ri =
1, but still give S if they all remain unaltered. These
modifications apply to both the RG and RL vectors.
Fortunately, we are able to incorporate these condi-

tions into the original calculation process. We still need
to abide by the original constraints so that the relevance
vectors sums to the required S, but also have to inte-
grate additional rules such that RG and RL is capable
of satisfying S + ε which certain positions are altered.
Therefore, we integrate some new rules that affect the
selection of ri when we encounter a choicepoint.

For the RG vector, we want to set ri = 1 at choi-
cepoints as long as the ri = 0 positions (decided or
otherwise) can contribute the equivalent of the residual.
Furthermore, we have to take into account for ranks that
haven’t been decided, some subset of ri that must be
allocated to fulfilling the lower bound S:

ri ∈ RG =

⎧⎨
⎩

0 if acc′(i) + rem (i) <

S − (con (i) + acc (i)) + ε

1 otherwise ,

where:

acc′(i) =
{

0 if i = 1∑i−1
j=1(1− rj) · con (j) otherwise .

For the RL vector, we want to set ri = 0 at choice-
points as long as the remaining contributions can reach
the upper bound S + ε:

ri ∈ RL =
{

1 if acc (i) + rem (i) < S + ε

0 otherwise .

After integration of these rules, both RG and RL fit
the criteria which allows some subset of their ri = 0
judgments to be altered to reach the upper bound of the
RBP score.

5.2 Positions of unjudged ranks
To supplementRG and RL, we determine the positions
at which unjudged documents may occur in these vec-
tors, taking

ri =
{
NA if acc (i) + rem′(i) < ε

0 otherwise ,

where:

rem′(i) =
{

0 if i = 1∑d
k=i+1(1− rk) · con (k) otherwise .

Note that this calculation is only applied on ranks where
ri = 0, since we cannot change positions which have
been previously decided to be relevant. Choicepoints
can also be handled in a similar manner to determine
the possible combinations of unknown judgment ranks,
meaning we can consistently select ri = NA to shift
unjudged documents towards the earlier ranks, or ri =
0 to shift them to later ones.
Using the RG and RL vectors as a base, we now

have four possible vector combinations. However,
because we are most interested in the extremes of
the relevance combinations, we let R′

G represent
the lexicographically greatest vector with unknown
judgments shifted towards the top of the ranking, and
R′

L represent the lexicographically least vector with
unknown judgments shifted towards the bottom of the
ranking.
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Figure 4: Change in RBP values for relevance vectors when
p is varied. The darker lines indicates the upper and lower
bounds for possible RBP values at any given p. This stylized
figure illustrates the change in RBP bounds; and actual RBP
bounds will vary.

5.3 System comparison with residuals
Using our previous definitions of SA, pA, SB and pB >

pA, we now introduce εA and εB to represent the RBP
residual reported by each system. Following the con-
vention of generating relevance vectors for system B
as it has the higher p value, we now have bounds of
{SB, SB +εB} as the set of possible RBP values at pB .
Firstly, we will deal with range of RBP scores pos-

sible at the lower bound of the initial RBP score. In this
case, ri = NA ranks in both R′

G and R′
L must be 0 for

the score of SB to be obtained. This implies the posi-
tions of the unjudged documents are not of importance,
as only ri = 0 positions were altered in creating R′

G

and R′
L. We can simply calculated the possible RBP

scores using the unaltered RG and RL vectors.
At the upper bound of the initial RBP score, all

unjudged ranks in both R′
G and R′

L must be changed
to 1 for the score of SB + εB to be obtained. We must
now set ri = NA to ri = 1 in both vectors, and plot
these in a similar manner. Figure 4 depicts the RBP
bounds for a non-zero RBP residual.
We can see that in the case of a RBP residual being

present, the upper and lower bounds on the possible
RBP values are dictated by the magnitude of the resid-
ual at the initial p values. For larger values of p, the
range of possible RBP values is dictated by R′

L and
RG, while for smaller values of p it is dictated by RL

and R
′
G. Using these observations, our outcomes for

the experimental scenario can be updated as follows:

1. System B outperforms System A if and only if
(SA + εA) < RBP (R′

L, pA).

2. System A outperforms System B if and only if
SA > RBP (R′

G, pA).

The interpretations for these outcomes are similar
to the situation when no residual is present: one sys-
tem outperforms the other only it’s lowest possible RBP

score at the given p is higher than the highest possible
RBP score for the other system. In the case of overlap,
it is still impossible to determine whether one system is
better due insufficient knowledge about the generated
relevance vectors.

6 Discussion
Although our method for comparing the RBP scores
of different retrieval systems is relatively straightfor-
ward in terms of the processes involved, there remains
a number of inherent characteristics (some intrinsic to
the design of RBP itself) which should be taken into
consideration.
Firstly, the initial process of generating relevance

vectors is applicable for all values of p, although the
number of possible relevance vectors generated varies:

• For p = 0.5, for all ranks con (i) = rem (i) mean-
ing there will always be exactly two vectors gen-
erated for all RBP values with either recurring 0
or 1 at the tail. These are the RG and RL vectors
respectively. The range of possible RBP values as
p is shifted is [0, 1], as shown in Figure 3.

• For p < 0.5, some values of RBP are impossible
to obtain: consider the case when p = 0.2 and
S = 0.5. In this case, con (1) = (1 − 0.2) ×
(0.2)0 = 0.8 and rem (1) = 0.2 (assuming d =
∞), meaning it is impossible to obtain any RBP
score between 0.2 and 0.8, as ri cannot be as-
signed in any manner. In all other cases, there is
a single unique vector. The range of possible RBP
values is [0, p] and [1 − p, 1], with similar (and so
on recursively) gaps within these two ranges.

• For p > 0.5, all possible values of RBP are obtain-
able. At a given level of accuracy, higher values
of p will generate more potential vectors in R as
there is a smaller variation in con (i). The range of
possible RBP values is [0, 1].

Furthermore, because the generation process is
based around determining potential contributions of
individual ranks in the output vector, RBP scores
obtained using non-binary relevance judgments are
incompatible. This is because the additional variable
introduced by the scaled judgments further confounds
the range of choicepoints, and instead of seeking binary
representations using a fractional radix, we are seeking
n-ary ones.
Earlier we mentioned that when ranges of possible

RBP values overlap, no unambiguous conclusion can be
made in terms of relative superiority of systems. How-
ever, in the case when no residual is present in either
system, supposing we have generated all possible rele-
vance vectorsR (instead of just RG and RL), calculat-
ing their values at the target p value will give a discrete
set of possible RBP values instead of a range. Using
basic probability measures it is tempting to determine a
crude percentage chance that either system is superior.
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Unfortunately, the shortcomings of this approach
outweigh the benefits. The number of calculations
required increases greatly for larger initial values
of p, and the presence of RBP residuals in either
system exacerbates the problem. The computation
may be manageable for small residuals, but the overall
expenditure does not justify the (arguably) limited
usefulness of the information obtained. A simpler
approach would be to calculate the numeric overlap of
the two RBP regions, although this conveys even less
information asR can vary greatly with different values
of p, meaning the probability estimate will be quite
likely to be skewed in some manner.
Finally, despite the fact that it is possible to calcu-

late the range of RBP values at all values of p using
the RG and RL vectors, the knowledge of upper and
lower bounds of RBP for p greater than the original
has limited usefulness. Although it was included in
our illustrations for completeness, the upper and lower
bounds represent extreme cases when the trailing doc-
uments are either all completely relevant or completely
irrelevant. As such, these bounds should be used as
guidelines only, rather than an indication that the com-
parison is possible.

7 Conclusion
We have presented a method comparing two
systems evaluated using the Rank-Biased Precision
effectiveness measure with different values for
parameter p. This is achieved by generating the
lexicographically greatest and least relevance vectors
which can give rise to the original RBP score at the
specified p, and using those two vectors to model
the upper and lower bounds of possible RBP values
at all other values of p. Furthermore, the generation
and modeling process can be modified to handle RBP
residuals, which will almost certainly be present in real
world evaluation experiments.
By utilizing the processes we outlined, it may be

possible for direct conclusions to be drawn regarding
the superiority of one system over another, even though
they have been scored using different values of p. This
is a significant improvement from the current situation
where there is no process to compare systems evaluated
using varying values of p, and may aid in the uptake of
RBP as a standard experimental metric. It is also pos-
sible that, with appropriate amendment, our proposed
method for system comparison can be applied to other
evaluation metrics that have fixed relevance contribu-
tions for each given position in the document ranking.
In terms of possible improvements, currently our

method for performing system comparisons fails to de-
liver a clear outcome when there is an overlap between
the RBP bounds of both systems at the required p value.
It is not clear how this situation can be handled due
to the limited information available when generating
relevance vectors, and finding better approaches to this
problem is a topic currently under investigation.

Finally, to get a sense of how often RBP bounds do
in fact overlap when performing comparisons, it may
be possible to utilize runs from existing TREC datasets
and recalculate RBP scores using different p values.
We can then compare different systems and observe
how often one system is outright superior to the other,
and establish a general idea of the applicability for our
comparison method in its current form.
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