
Querying Linguistic Annotations

Sumukh Ghodke and Steven Bird
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia

{sghodke,sb}@csse.unimelb.edu.au

Abstract Over the past decade, a variety of expres-
sive linguistic query languages have been developed.
The most scalable of these have been implemented on
top of an existing database engine. However, with the
arrival of efficient, wide-coverage parsers, it is feasi-
ble to parse text on a scale that is several orders of
magnitude larger. We show that the existing database
approach will not scale up, and speculate on a new
approach that leverages proximity search in the context
of an IR engine. We also propose a simple syntax for
querying linguistic annotations, avoiding the usability
problems with existing tree query languages.

Keywords Information Retrieval, Natural Language Tech-

niques and Documents, XML Document Standards

1 Introduction
High quality part-of-speech taggers and syntactic

parsers are able to annotate large quantities of English

text [5]. With suitable indexing methods, it should be

possible for users to express queries that are sensitive to

this additional information, and support more focussed

search.

In some cases, the part-of-speech of a word may

disambiguate the primary senses of the word, e.g. wind,

park. A user could easily select the intended POS-

tag using a query format like: wind/N or park/V. In

other cases we want to do a proximity search but need

to constrain the syntax of the intervening material, e.g.

give NP up will find instances of “give up” wrapped

around a noun phrase (NP), and won’t include results

which have other intervening material.

Expecting users to annotate their queries adds a

significant burden, without guaranteeing that the result

will be sufficiently improved to justify the effort.

However, we hypothesise that a specialised query

engine can cluster results from a conventional ad-hoc

query using extra information present in the linguistic

annotations. Exemplars from each cluster could be

presented to the user, together with the annotations

that characterise each cluster. In this way, users are

educated about the relevant linguistic properties and

can start to annotate their own queries.

Proceedings of the 13th Australasian Document Comput-
ing Symposium, Hobart, Australia, 8 December 2008.
Copyright for this article remains with the authors.

��

��

���

��	

��


� ��� ��� �	� 
�� ��� � ��� �����

���

����

���	

��


��� ���� ���

�������������

Figure 1: Syntax Tree

For example, an ad hoc query for documents con-

cerning acquisitions of QANTAS mostly returns doc-

uments concerning acquisitions by QANTAS. The lin-

guistic difference between these two cases is the gram-

matical role of QANTAS relative to the main verb (sub-

ject vs object). If this difference could be discovered, a

user would be able to look through results of the refined

query: "acquire QANTAS/NP-OBJ". Similar analysis

could detect differences in tense and cluster the results

as pertaining to the past or the future.

This paper explores the suitability of existing work

on linguistic tree query as the basis for such a query

engine. The paper is organised as follows. First we give

an overview of existing work on linguistic tree query

(§2) and XML indexing (§3). Our scaling experiments

are presented in §4. Our negative conclusions about

scaling lead to a more speculative discussion (§5) on

the prospects for using an IR engine for performing the

desired query tasks.

2 Linguistic Tree Query
The problem of representing and querying linguistic

annotations has been an active area of research for

several years [3, 7]. It has grown out of work on

curating large databases of annotated text such as

treebanks [10] for use in developing and testing

language technologies. Figure 1 gives an example

of a parsed sentence; it represents the constituent

structure of a sentence, and involves non-terminal

nodes for noun phrases, verb phrases, prepositional

phrases, and so on. Trees also encode relationships

between these constituents, and permit us, amongst

other things, to discover the subject and object noun

phrases corresponding to a particular verb.

69



At least a dozen linguistic tree query languages have

been developed for interrogating treebanks (see [8] for a

survey). One of these languages, called LPath, extends

XPath [4] with extra navigational operators tailored to

the needs of linguistic tree query [2].

The syntax of such languages is arcane, and we

would need to provide a more accessible, high-level

syntax for use by a non-specialised audience. For

instance, a high-level query for the word wind used as

a noun, wind/N, could be automatically translated to

the LPath expression //N[@lex="wind"] (and then

compiled into SQL for execution). The high-level query

"acquire QANTAS/NP-OBJ" could be translated into

the LPath expression //_[@lex="acquire"] ->
_[@lex="QANTAS"]\\NP-OBJ.

A more serious issue is scalability. Treebanks typ-

ically contain millions of words; the Penn Treebank,

for instance, has 4.5 million words [10]. The scale of

data on the Web is several orders of magnitude larger

again. We will explore the scalability of this approach

to querying linguistic annotations using the Penn Tree-

bank, using multiple copies when necessary in order to

simulate larger data sizes.

3 Indexing Hierarchical Data in Databases
Many approaches to storing hierarchical data have

been carefully analysed in recent years. In the past,

relational databases were preferred to specialised semi-

structured database approaches, since the relational

formalisms were more mature and offered superior

performance [14].

However, more recently, several features found

in relational databases have been incorporated into

native XML databases, and indexes have been designed

specifically for XML data. Commercial relational

databases such as Oracle and DB2 now support native

XML storage and retrieval, albeit with widely varying

indexing and query evaluation techniques. Oracle uses

a hybrid approach to store XML within relational tables

[9], while DB2 allows XML data to be stored natively

and builds value and full text indexes over them [12].

Both offer varying levels of XQuery support, and a

primitive XML datatype called XMLType which can

be used across all queries.

Yet another native XML database is the eXist

open source database. It builds three primary indexes

on XML data: the structure, range and full-text

indexes [11]. A structure index is similar to an

inverted index of all nodes and attributes of XML

documents along with their document and node ids.

The node ids help in identifying hierarchical and

sibling relationships without tree traversal. Range

indexes permit comparisons based on typed values

while full-text indexes support queries over sequences

of words or tokens.

Hierarchical data can be decomposed into sets of re-

lations and stored in a relational database. In our exper-

iments, we store all the elements and attributes in a sin-

gle node relation, as it is best suited for a diverse struc-

ture such as that present in annotated linguistic data. A

common feature linking such a relational representation

and the eXist database representation is the evaluation

of path expressions by decomposing them into smaller

components.

Each path expression is treated as sequence of ele-

ments interleaved with operators such as parent, child,

ancestor, or other navigational constructs. These ex-

pressions are evaluated by converting the path sequence

into one or more binary expressions involving a sin-

gle operator. Indexes are used to search for matching

elements on either side of the binary expression and

the resulting sets are reduced using a join based on the

operator. This join operation is termed the structural

join and several optimisations have been proposed to

improve the efficiency of such joins [1].

4 Experiments
In this section we describe the experimental setup used

to evaluate performance of databases for linguistic

queries. We ran the experiments on an Intel core 2

Duo 2.4 GHz processor with 2 GB of RAM, running

openSUSE Linux 11.0. The task of choosing the right

database system and optimising parameter settings for

each of the experiments introduce multiple variables

within the experiment. As our study attempts to

highlight the scalability of particular systems rather

than compare relative performance, we feel that fine

tuned optimisations will not drastically change our

observations on scalability. Instead we focus on

scalability by varying the size of the datasets.

Annotated texts from the Wall Street Journal sec-

tion of the Penn Treebank corpus were used in our ex-

periments. This corpus contains around 50,000 sen-

tences annotated with POS and syntactic tags. In order

to study the variation of performance with the size of

the datasets we either selected a subset of the corpus, or

used multiple copies to simulate larger datasets.

Tests using the relational approach use the Oracle

11g Standard Edition, while the eXist XML database

ver-1.2.2 is used in the native XML approach. The rela-

tional database schema contains a node relation storing

all elements and attributes of the treebank. This schema

is similar to the one used by LPath to query treebanks

and more details can be found in Bird et al.’s work on

LPath [2]. For the XML database approach we store

each sentence as a separate XML document.

The LPath queries used during evaluation are listed

in Table 3. These queries were converted to SQL for

the relational database and into XQuery for the XML

database. Some of these queries include highly selec-

tive nodes, while others search for commonly occurring

terms. Queries 3–6 evaluate the effects of a simple

join on nodes with varying selectivity. Queries 7 and

8 find the occurrences of words within the treebank

irrespective of their POS tag. Other queries include

features like scoping, edge alignment, and negation; all

70



Table 1: Query execution time in Native XML DB
Dataset sizes

500 5k ∼25k ∼50k ∼100k ∼200k

1 .06 .51 .99 1.99 4.59 16.29
2 .01 .12 .60 .73 1.23 3.13

3 .08 .24 .95 1.90 5.80 20.58

4 .08 .11 .86 2.32 7.98 29.81

5 .01 .01 .50 1.01 1.99 2.63

6 .03 .05 .40 .87 7.20 23.62

7 .38 .83 3.98 9.38 33.26 156.60
8 .10 .63 4.17 9.31 29.93 116.36
9 .19 .82 2.16 3.73 31.24 97.72

10 .82 2.36 9.24 17.43 43.28 86.90

11 .17 .54 2.06 4.23 17.48 76.28

12 .64 3.20 14.85 27.99 58.19 160.28
13 .03 .17 1.19 2.43 10.45 37.95

Table 2: Query execution time in Relational DB
Dataset sizes

500 5k ∼25k ∼50k ∼100k ∼200k

1 .10 .32 1.29 2.48 4.80 9.46

2 .07 .07 .08 .07 .07 .11

3 .08 .18 .63 1.20 2.35 4.94

4 .10 .35 1.47 2.83 5.54 12.15
5 .07 .08 .07 .07 .08 .13

6 .07 .09 .16 .24 .40 .13

7 .18 1.07 5.04 9.94 19.93 6.79

8 .07 .07 .08 .07 .07 .12

9 .09 .16 .49 .90 1.65 12.33
10 .08 .14 .41 .76 1.30 2.75

11 .10 .29 1.17 2.15 4.12 12.11
12 .08 .12 .30 .55 .90 2.09

13 .08 .08 .09 .10 .10 .18

features commonly found in linguistic queries. Adja-

cency is another common linguistic query operator and

is represented by queries 12 and 13.

In the Oracle setup, the buffer cache and shared pool

of the database were cleared after every query, but the

first run always took the greatest time to execute. Sub-

sequent queries had stable and repeatable query times.

Table 2 lists the minimum time (in seconds) taken by

each query over a sample of 3 runs. The eXist queries

seemed to perform more uniformly between runs, but

random slowdowns were observed in some cases. Each

value in Table 1 corresponds to the minimum execution

time (in seconds) of 3 consecutive runs of each query,

on the eXist database. The minimum execution time

was chosen instead of an average to avoid including

random slowdown times in the measurement.

One of the main observations in the eXist

experiment was that the rate of increase in execution

time increases with dataset size; especially for larger

datasets. For some queries, when we double the size

of the dataset from 100k to 200k sentences, the time

taken by eXist increases drastically; see the results

for queries 1, 7, 8 and 12 in Table 1, where values of

interest appear in boldface. However, these queries

do not display such a trend in the Oracle setup. On

Table 3: Test Queries
LPath query

1 //NP

2 //PP_LOC_MNR

3 //NP/NP

4 //NP//NP

5 //RRC/PP_TMP

6 //VP/PP_TMP

7 //_[@lex=saw]

8 //_[@lex=rapprochement]

9 //VP{//VB-->NN}

10 //VP//NP$

11 //NP[not(//JJ)]

12 //NP=>NP

13 //ADVP=>ADJP

further inspection, we can see that queries 7 and 8

probably involve simple index lookup. It is unclear

why these queries exhibit such an increase in spite of

using the full-text index in eXist. The poor scaling

behaviour of Query 1 and 12 could be attributed to the

low selectivity of NP.

Queries 6 and 9 are exceptions to the pattern men-

tioned above; their execution times grows by a factor

of 8–10 between 50k and 100k sentence datasets, but

drops to a factor of 3 for larger datasets. A plausible

explanation for this behaviour could be the thrashing

of memory, caused by intermediate object creations.

Query 5 is very similar to query 6 in its construction but

does not exhibit such a phenomenon as it is composed

of high selectivity elements. Overall, the query times in

eXist almost always seem to increase by a factor of 3–5

from 100k to 200k sentences.

A linear increase in time was observed in fewer

Oracle tests when compared to eXist. High selectivity

queries in Oracle displayed almost constant execution

time, indicating optimal use of indexes. However,

query 4, 9 and 11 (in boldface), show an increase in

execution time with the size of the dataset.

5 Searching Linguistic Annotations Using
an IR Engine

From our experiments we observe that the database ap-

proach using structural joins does not scale for queries

containing low selectivity elements. To address this

shortcoming we intend to evaluate systems where paths

are indexed in their entirety and not as a combination of

element pairs. One such approach has been proposed by

Cooper et. al., where paths are inserted into an indexing

data structure called Index Fabric [6]. Paths from the

root to each of the leaf nodes of every tree are treated as

string sequences and are inserted into the data structure.

Patricia tries form a core component of Index Fab-

ric. They are unbalanced structures and not very ef-

ficient for main memory operations. Hence, in Index

Fabric, access to different fragments of a trie is broken

down into multiple layers. Pointers are created at each

node to navigate to deeper tree fragments within lower

71



layers. A multi-layered approach balances the overall

data-structure and results in a constant number of I/O

look-ups for all searches. The Patricia trie is also known

to use an aggressive key compression algorithm, mak-

ing it a scalable architecture for large number of keys

and for paths of varied lengths. The only drawback of

this approach is that it suits queries where the paths are

defined from the root to the leaves or for selected pre-

defined paths, and not for arbitrary partial expressions.

An alternative approach – using a combination of

IR and database systems – has been developed by Park

et al. and is known as XIR. Here, paths are treated as

sentences, and individual elements in a path form the

words within the sentence [13]. They identify paths

as representations of the document schema and hence

are indexed independently from the data, which is con-

sidered to occupy only the leaf nodes. Each unique

path is stored in a path table, while individual elements

comprising the paths are indexed in an inverted index.

Every unique element appears in the inverted index with

a postings list containing information regarding the el-

ement’s occurrence in different paths, an offset indicat-

ing its relative position within the path and the total

length of the path. The data and element information

is stored in a separate table with document and node

identifiers.

The two key contributions of the XIR system

include the concept of using inverted indexes to search

path expressions and the conversion of path queries

into equivalent IR style proximity searches. For

instance, a query such as VP/NP/NNP, which searches

for a singular proper noun phrase (NNP) in the specified

hierarchical relationship with a noun phrase (NP)

and verb phrase (VP), could be converted into an IR

query where the near operator specifies the proximity

relation: VP near(1) NP near(1) NNP. Similarly,

a descendent query VP//NP, could be rewritten as

VP near(∞) NP, indicating that the second element

can appear anywhere after the first element in the

path string. Once the set of paths is known from the

inverted index, a select query on the data and element

information table retrieves the final results.

For linguistic queries, sequential navigation is as

significant as hierarchical navigation. We expect that

by extending the XIR approach, we could create in-

dependent indexes for hierarchical and sequential rela-

tionships in a document. Queries containing hierarchi-

cal and sequential expressions would be converted into

appropriate proximity queries and the resulting nodes

could be reduced by a join operation. This method

would essentially reduce the number and cardinality of

joins, as they would occur only when the expression

changes from path to sequence or vice-versa and not at

every element in the expression.

As a part of ongoing work in this area, we would

also like to compare the performance of such a system

with a pure database implementation containing an in-

dexing algorithm similar to Index Fabric.

Acknowledgements
We gratefully acknowledge the support of Dr A. Ku-

maran and Microsoft Research India.

References
[1] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, Jignesh M.

Patel, Divesh Srivastava and Yuqing Wu. Structural joins: a

primitive for efficient XML query pattern matching. In ICDE
’02: Proceedings of the 18th International Conference on Data
Engineering, page 141, Washington, DC, USA, 2002. IEEE

Computer Society.

[2] Steven Bird, Yi Chen, Susan B. Davidson, Haejoong Lee and

Yifeng Zheng. Designing and evaluating an XPath dialect

for linguistic queries. In ICDE ’06: Proceedings of the
22nd International Conference on Data Engineering, page 52,

Washington, DC, USA, 2006. IEEE Computer Society.

[3] Steven Bird and Jonathan Harrington (editors). Speech Com-
munication: Special Issue on Speech Annotation and Corpus
Tools, Volume 33 (1–2). Elsevier, 2001.

[4] James Clark and Steve DeRose. XML Path language (XPath).
W3C, 1999. http://www.w3.org/TR/xpath.

[5] Stephen Clark and James R. Curran. Wide-coverage efficient

statistical parsing with ccg and log-linear models. Computa-
tional Linguistics, Volume 33, Number 4, pages 493–552, 2007.

[6] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R.

Hjaltason and Moshe Shadmon. A fast index for semistructured

data. In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 341–350, San

Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[7] Stephan Kepser. Finite structure query: a tool for querying

syntactically annotated corpora. In Proceedings of the Tenth
Conference of the European Chapter of the Association for
Computational Linguistics, pages 179–186, 2003.

[8] Catherine Lai and Steven Bird. Querying and updating tree-

banks: A critical survey and requirements analysis. In Proceed-
ings of the Australasian Language Technology Workshop, pages

139–146, 2004.

[9] Zhen Hua Liu, Muralidhar Krishnaprasad and Vikas Arora.

Native XQuery processing in oracle XMLDB. In SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 828–833, New York,

NY, USA, 2005. ACM.

[10] Mitchell P. Marcus, Beatrice Santorini and Mary Ann

Marcinkiewicz. Building a large annotated corpus of English:

The Penn Treebank. Computational Linguistics, Volume 19,

Number 2, pages 313–30, 1993.

[11] Wolfgang Meier. Web, Web-Services, and Database Systems,

Volume Volume 2593/2008, Chapter eXist: an open source

native XML database, pages 169–183. Springer Berlin /

Heidelberg, 2008.

[12] Matthias Nicola and Bert van der Linden. Native XML support

in DB2 universal database. In VLDB ’05: Proceedings of the
31st international conference on Very large data bases, pages

1164–1174. VLDB Endowment, 2005.

[13] Young-Ho Park, Kyu-Young Whang, Byung Suk Lee and

Wook-Shin Han. Efficient evaluation of partial match queries

for XML documents using information retrieval techniques.

Database Systems for Advanced Applications, pages 95–112,

2005.

[14] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang

He, David J. DeWitt and Jeffrey F. Naughton. Relational

databases for querying XML documents: limitations and oppor-

tunities. In VLDB ’99: Proceedings of the 25th International
Conference on Very Large Data Bases, pages 302–314, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

72




