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Abstract Random Indexing (RI) K-tree is the combi-
nation of two algorithms for clustering. Many large
scale problems exist in document clustering. RI K-tree
scales well with large inputs due to its low complexity.
It also exhibits features that are useful for managing
a changing collection. Furthermore, it solves previ-
ous issues with sparse document vectors when using K-
tree. The algorithms and data structures are defined,
explained and motivated. Specific modifications to K-
tree are made for use with RI. Experiments have been
executed to measure quality. The results indicate that
RI K-tree improves document cluster quality over the
original K-tree algorithm.
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1 Introduction
The purpose of this paper is to present and analyse
the combination of Random Indexing (RI) with
the K-tree algorithm. Both RI and K-tree adapt to
changing data and decrease the cost of computationally
intensive vector based applications. This combination
is particularly suitable to the representation and
clustering of very large document collections.
Documents are typically represented in vector
space as very sparse high dimensional vectors. RI
can reduce the dimensionality and sparsity of this
representation. In turn, the condensed representation is
highly effective when working with K-tree. The paper
is focused on determining the effectiveness of using
RI with K-tree through experiments and comparative
analysis of results.

Sections 2 to 6 discuss K-tree, Random Indexing,
Document Representation, Experimental Setup and Ex-
perimental results respectively. The paper ends with a
conclusion in Section 7.

2 K-tree
K-tree [6, 1] is a height balanced cluster tree. It was first
introduced in the context of signal processing by Geva
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[10]. The algorithm is particularly suitable to clustering
of large collections due to its low complexity. It is
a hybrid of the B+-tree and k-means algorithm. The
B+-tree algorithm is modified to work with multi di-
mensional vectors and k-means is used to perform node
splits in the tree. K-tree is also related to Tree Struc-
tured Vector Quantization (TSVQ) [9]. TSVQ recur-
sively splits the data set, in a top-down fashion, using
k-means. TSVQ does not generally produce balanced
trees.

K-tree achieves its efficiency through execution of
the high cost k-means step over very small subsets of
the data. The number of vectors clustered during any
step in the K-tree algorithm is determined by the tree
order (usually≪ 1000) and it is independent of collec-
tion size. It is efficient in updating the collection while
maintaining clustering properties through the use of a
nearest neighbour search tree that directs new vectors
to the appropriate leaf node.

The K-tree forms a hierarchy of clusters. This hi-
erarchy supports multi-granular clustering where gen-
eralisation or specialisation is observed as the tree is
traversed from a leaf towards the root or vice versa.
The granularity of clusters can be decided at run-time
by selecting clusters that meet criteria such as distortion
or cluster size.

2.1 K-tree and Document Clustering
The K-tree algorithm is well suited to clustering large
document collections due to its low time complexity.
The time complexity of building K-tree is O(n log n)
where n is the number of bytes of data to cluster. This
is due to the divide and conquer properties inherent to
the search tree. De Vries and Geva [5, 6] investigate the
run-time performance and quality of K-tree by compar-
ing results with other INEX submissions and CLUTO
[13]. CLUTO is a popular clustering tool kit used in the
information retrieval community. K-tree has been com-
pared to k-means, including the CLUTO implementa-
tion, and provides comparable quality and a marked in-
crease in run-time performance. However, K-tree forms
a hierarchy of clusters and k-means does not. Com-
parison of the quality of the tree structure will be un-
dertaken in further research. The run-time performance
increase of K-tree is most noted when a large number
of clusters are required. This is useful in terms of doc-



ument clustering because there are a huge number of
topics in a typical collection. The on-line and incre-
mental nature of the algorithm is useful for managing
changing document collections. Most clustering algo-
rithms are one shot and must be re-run when new data
arrives. K-tree adapts as new data arrives and has the
low time complexity of O(log n) for insertion of a single
document. Additionally, the tree structure also allows
for efficient disk based implementations when the size
of data sets exceeds that of main memory.

2.2 K-tree Definition
K-tree builds a nearest neighbour search tree over a set
of real valued vectorsV in d dimensional space.

∀v ∈ V : v ∈ R
d (1)

It is inspired by the B+-tree where all data records are
stored in leaf nodes. Tree nodes,N , consist of a se-
quence of (vector, child node) pairs of lengthl. The
tree order,m, restricts the number of vectors stored in
any node to between one andm.

1 ≤ l ≤ m (2)

N = 〈(v1, c1), ..., (vl, cl)〉 (3)

The tree consists of two types of nodes. Leaf nodes
contain the data vectors that were inserted into the tree.
Internal nodes contain clusters. A cluster vector is
the mean of all data vectors contained in the leaves of
all descendant nodes (i.e. the entire cluster sub-tree).
This follows the same recursive definition of a B+-tree
where each tree is made up of a set of smaller sub-trees.
Upon construction of the tree, a nearest neighbour
search tree is built in a bottom-up manner by splitting
full nodes using k-means [14] wherek = 2. As the
tree depth increases it forms a hierarchy of “clusters
of clusters” from the root to the above-leaf level.
The above-leaf level contains the finest granularity
cluster vectors. Each leaf node stores the data vectors
pointed to by the above-leaf level. The efficiency of
K-tree stems from the low complexity of the B+-tree
algorithm, combined with only ever executing k-means
on a relatively small number of vectors, defined by the
tree order, and by using a small value ofk.

2.3 Modifications to K-tree
The K-tree algorithm was modified for use with RI.
This modified version will be referred to as “Modified
K-tree” and the original K-tree will be referred to as
“Unmodified K-tree”.

All the document vectors created by RI are of unit
length in the modified K-tree. Therefore, all centroids
are normalised to unit length at all times. The k-means
used for node splits in K-tree was changed to use ran-
domised seeding and restart if it did not converge within
six iterations. The process always converged quickly in
our experiments; although it is possible to constrain the
number of restarts we did not find this to be necessary.
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Figure 1: Level 1

The original K-tree algorithm does not modify any
of the centroids. They are simply the means of the
vectors they represent. The k-means implementation
runs to complete convergence and seeds centroids via
perturbation of the global mean. To create two seeds
the global mean is calculated and then the two seeds
are created by moving away from the mean in opposite
directions.

2.4 K-tree Example
Figures 1 to 3 are K-tree clusters in two dimensions.
1000 points were drawn from a random normal distri-
bution with a mean of 1.0 and standard deviation of 0.3.
The order of the K-tree,m, was 11. The grey dots repre-
sent the data set, the black dots represent the centroids
and the lines represent the Voronoi tessellation of the
centroids. Each of the data points contained within each
tile of the tessellation are the nearest neighbours of the
centroid and belong to the same cluster. It can be seen
that the probability distribution is modelled at different
granularities. The top level of the tree is level 1. It is
the coarsest grained clustering. In this example it splits
the distribution in three. Level 2 is more granular and
splits the collection into 19 sub-clusters. The individual
clusters in level 2 can only be arrived at through a near-
est neighbour association with a parent cluster in level
1 of the tree. Level 3 is the deepest level in the tree
consisting of cluster centroids. The 4th level is the data
set of vectors that were inserted into the tree.

2.5 Building K-tree
The K-tree is constructed dynamically as data vectors
arrive. Initially the tree contains a single empty root
node at the leaf level. Vectors are inserted via a nearest
neighbour search, terminating at the leaf level. The root
of an empty tree is a leaf, so the firstm data vectors are
stored in the root, at which point the node becomes full.
When them + 1 vector arrives the root is split using
k-means wherek = 2, clustering allm + 1 vectors
into two clusters. The two centroids that result from
k-means are then promoted to become the centroids in
a new root. The vectors associated with each centroid
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Figure 2: Level 2
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Figure 3: Level 3

are placed into a child node. This promotion process
has created a new root and two leaf nodes in the tree.
The tree is now two levels deep. Insertion of a new
data vector follows a nearest neighbour search to find
the closest centroid in the root. The vector is inserted
into the associated child. When a new vector is in-
serted the centroids are updated recursively along the
nearest neighbour search path, all the way back to the
root node. The propagated means are weighted by the
number of data vectors contained beneath them. This
ensures that any centroid in K-tree is the mean vector of
all the data vectors contained in the associated sub tree.
This insertion process continues, splitting leaves when
they become full, until the root node itself becomes
full. K-means is then run on the root node containing
centroids. The vectors in the new root node become
centroids of centroids. As the tree grows, internal and
leaf nodes are split in the same manner. The process of
promotion can potentially propagate to cause a full root
node at which point the construction of a new root fol-
lows and the tree depth is increased by one. At all times
the tree is guaranteed to be height balanced. Although
the tree is always height balanced nodes can contain as
little as one vector. In this case the tree will contain
many more levels than a tree where each node is half

full. Figure 4 shows this construction process for a K-
tree of order three(m = 3).

2.6 Sparsity and K-tree
K-tree was originally designed to operate with dense
vectors. When a sparse representation is used perfor-
mance degrades even though there is significantly less
data to process. The clusters in the top levels of the tree
are means of most of the terms in the collection and are
not sparse at all. The algorithm updates cluster centres
along the insertion path in the tree. Since document
vectors have very high dimensionality this becomes a
very expensive process.

The medoid K-tree [6] extended the algorithm to
use a sparse representation and replace centroids with
document examples. This improved run-time perfor-
mance and decreased memory usage. Unfortunately it
decreased quality when using sparse document vectors.
The document examples in the root of the tree were al-
most orthogonal to new documents being inserted. The
documents were unlikely to have meaningful overlap in
vocabulary.

The approach taken by De Vries and Geva at INEX
2008 [5] is a simple approach to dimensionality reduc-
tion or feature selection. It is called TF-IDF culling
and it is performed by ranking terms. A rank is cal-
culated by summing all weights for each term. The
weights are the BM25 weight for each term in each
document. This can also be explained as the sum of the
column vector in the document by term matrix. The top
n terms with the highest rank are selected, where n is
the desired dimensionality. This works particularly well
with term occurrences due to the Zipf law distribution
of terms [19]. The collection frequency of a term is
inversely proportional to its rank according to collection
frequency. Most of the term weights are contained in
the most frequent terms.

3 Random Indexing
Random Indexing (RI) [18] is an efficient, scalable and
incremental approach to the word space model. Word
space models use the distribution of terms to create high
dimensional document vectors. The directions of these
document vectors represent various semantic meanings
and contexts.

Latent Semantic Analysis (LSA) [7] is a popular
word space model. LSA creates context vectors from
a document term occurrence matrix by performing Sin-
gular Value Decomposition (SVD). Dimensionality re-
duction is achieved through projection of the document
term occurrence vectors onto the subspace spanned by
the vectors with the largest Eigen values in the decom-
position. This projection is optimal in the sense that it
minimises the variance between the original matrix and
the projected matrix. In contrast, Random Indexing first
creates random context vectors of lower dimensionality,
and then combines them to create a term occurrence
matrix in the dimensionally reduced space. Each term
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Figure 4: K-tree Construction

in the collection is assigned a random vector, and the
document term occurrence vector is then a superposi-
tion of all the term random vectors. There is no matrix
decomposition and hence the process is efficient.

The RI process is conceptually very different from
LSA and does not have the same optimality properties.
The context vectors used by RI should optimally be
orthogonal. Nearly orthogonal vectors can be used and
have been found to perform similarly [4]. These vec-
tors can be drawn from a random Gaussian distribution.
The Johnson and Linden-Strauss lemma [11] states that
if points are projected into a randomly selected sub-
space of sufficiently high dimensionality, then the dis-
tances between the points are approximately preserved.
The same topology that exists in the higher dimensional
space is reflected in the lower dimensional randomly se-
lected subspace. Consequently, RI offers low complex-
ity dimensionality reduction while still preserving the
topological relationships amongst document vectors.

3.1 Random Indexing Definition
In RI, each dimension in the original space is given a
randomly generated index vector. The index vectors
are high dimensional, sparse and ternary. Sparsity is
controlled via a seed length that specifies the number of
randomly selected non-zero dimensions. Ternary vec-
tors consist of randomly distributed +1 and -1 values in
the non-zero dimensions.

In the context of document clustering, RI can be
viewed as a matrix multiplication of a document by

term matrixD and a term by index-vector matrixI. Al-
ternatively,I can be referred to as a random projection
matrix. Each row vector inD represents a document,
each row vector inI is an index vector,n is the number
of documents,t is the number of terms andr is the
dimensionality of the reduced spaced.R is the reduced
matrix where each row vector represents a document.

Dn×tIt×r = Rn×r (4)

RI has several advantages. It can be performed in-
crementally and on-line as data arrives. Any document
can be indexed (i.e. encoded as an RI vector) inde-
pendently from all other documents in the collection.
This eliminates the need to build and store the entire
document by term matrix. Additionally, newly encoun-
tered dimensions (terms) in the document collection are
easily accommodated without having to recalculate the
projection of previously encoded documents. In con-
trast, SVD requires global analysis where the number
of documents and terms are fixed. The time complexity
of RI is also very attractive. It is linear in the number of
terms in a document and independent of collection size.

3.2 Choice of Index Vectors
The index vectors used in RI were chosen to be
sparse and ternary. Ternary index vectors for RI were
introduced by Achlioptas [2] as being well suited for
database environments. The primary concern of sparse
index vectors is reducing time and space complexity.
Bingham and Mannila [4] run experiments indicating



Figure 5: Random Indexing Example

that sparse index vectors do not affect the quality of
results. This is not the only choice when creating
index vectors. Kanerva [12] introduces binary spatter
codes. Plate [15] explores Holographic Reduced
Representations that consist of dense vectors with
floating point values.

3.3 Random Indexing Example
In practice, to construct a document vector, the docu-
ment vector is initially set to zero, and then the sparse
index vector for each term in the document is added
to the document vector. The weight of the added term
index vector may be determined by TF-IDF or another
weighting scheme. When all terms have been added,
the document vector is normalised to unit length. There
is no need to explicitly form the random projection ma-
trix in Equation (4) up-front. The random index vectors
for each term can be generated and stored as they are
first encountered. The fact that each index vector is
sparse means that the vectors use less memory to store
and are faster to add.

The effect of this approach is that each document
will have a particular signature that can be compared
with other documents via cosine similarity. The docu-
ment signature is thus a vector on the unit hyper-sphere.

In the simple scenario in Figure 5 the index vectors
for the four words travel, mars, space and telescope, are
added to the document vector as they are encountered
in the text of the document. Afterwards, the document
should be normalised.

The sparse index vectors can be efficiently stored by
simply storing the position of the non-zero entries with
the sign of the position indicating whether it is one or
negative one.

3.4 Random Indexing K-tree
The time complexity of K-tree depends on the length
of the document vectors. K-tree insertion incurs two
costs, finding the appropriate leaf node for insertion and
k-means invocation during node splits. It is therefore
desirable to operate with lower dimensional vector rep-
resentation.

The combination of RI with K-tree is a good fit.
Both algorithms operate in an on-line and incremental
mode. This allows it to track the distribution of data
as it arrives and changes over time. K-tree insertions
and deletions allow flexibility when tracking data in
volatile and changing collections. Furthermore, K-tree

performs best with dense vectors, such as those pro-
duced by RI.

4 Document Representation
The INEX 2008 XML Mining collection was used to
complete the experiments. It contains 114,366 docu-
ments that are a subset of the XML Wikipedia corpus
[8]. 15 different categories were provided for the docu-
ments.

Document content was represented with BM25
[17]. Stop words were removed and the remaining
terms were stemmed using the Porter algorithm [16].
BM25 is determined by term distributions within each
document and the entire collection. BM25 works
with similar concepts as TF-IDF except that is has
two tuning parameters. The BM25 tuning parameters
were set to the same values as used for TREC [17],
K1 = 2 andb = 0.75. K1 influences the effect of term
frequency andb influences document length.

Links were represented using LF-IDF [5]. This re-
sulted in a document-to-document link matrix. If there
is a link between documentsi and j then a value of
one is added to positioni, j andj, i in the matrix. If
two documents both link to each other a value of two
is recorded in their respective vectors. Each row vector
of the matrix represents a document as a vector of link
frequencies to and from other documents.

The motivation behind this representation is that
documents with similar content will link to similar
documents. For example, in the current Wikipedia
both car manufacturers BMW and Jaguar link to the
Automotive Industry document. Link frequencies were
weighted with the same Inverse Document Frequency
heuristic from TF-IDF. The idea is to decrease the
weight of highly frequent links and increase the
weight of less frequent links. Links to year documents
in the Wikipedia are examples of “stop links” that
are weighted down by this heuristic. Unlike term
frequencies in TF-IDF the link frequencies in LF-IDF
are not normalised. De Vries and Geva [5] found that
normalising link frequencies decreased classification
performance.

When document and link representations are com-
bined they are both converted to unit vectors and con-
catenated. Converting each representation to unit vec-
tors ensures that the weights of one representation do
not dominate the other. De Vries and Geva [5] found
this to be effective for classification.

5 Experimental Setup
Experiments have been run to measure the quality dif-
ference between various configurations of K-tree. Sec-
tion 2.3 describes the modifications made to K-tree. Ta-
ble 1 lists all the configurations tested.

The following conditions were used when running
the experiments.



1. Each K-tree configuration was run a total of 20
times.

2. The documents were inserted in a different random
order each time K-tree is built.

3. If RI was used, the index vectors were generated
statistically independently each time K-tree was
built.

4. For each K-tree built, k-means++ [3] was run 20
times on the codebook vectors to create 15 clus-
ters.

5. All document vectors were unitised after perform-
ing dimensionality reduction.

The conditions listed above resulted in 400 mea-
surements for each K-tree configuration. For each of
the 20 K-trees built, k-means++ was run 20 times. The
repetition of the experiments is to measure the variance
caused by the random insertion order into K-tree, the
randomised seeding process in k-means in the modi-
fied K-tree and the randomised seeding process of k-
means++.

Assessment of clustering quality is based on
the INEX XML Mining track. The set of 114,366
documents, belonging to 15 classes were used to
evaluate clustering quality of INEX submissions. The
cluster labels are taken from the Wikipedia itself.
K-tree generates clusters in an unsupervised manner,
and it is not necessarily going to produce 15 clusters
at a particular level in the tree. In order to re-use
the INEX test collection, it was necessary to post
process the K-tree and to reduce a cluster level in the
tree to 15 clusters by using k-means++. Note that
this is a low cost operation involving only a small
number of vectors, which is not required in an ordinary
application. It is done for the sole purpose of producing
comparable results with the INEX benchmark data.
The same approach was taken at INEX 2008 by De
Vries and Geva [5]. For a comparison of entropy and
purity to be meaningful they have to be measured on
the same number of clusters.

Micro averaged purity and entropy are compared.
Micro averaging weights the score of a cluster by its
size. Purity and entropy are calculated by comparing
the clustering solution to the labels provided. A higher
purity score indicates a higher quality solution because
the clusters are more pure with respect to the ground
truth. A lower entropy score indicates a higher quality
solution because there is more order with respect to the
ground truth.

6 Experimental Results
Tables 3 to 7 contain results for the K-tree configura-
tions tested listed in Table 1. Table 2 lists the meaning
of the symbols used. Figures 6 and 7 are graphical
representations of the average micro purity and entropy.

The unmodified K-tree using TF-IDF culling and
BM25 had unexpected results as seen in Table 3. The
average micro purity and entropy peaked at 400 dimen-
sions. Performing this dimensionality reduction at these
lower dimensions had not been performed before. This
is an interesting and unexpected result and future exper-
iments will need to determine if the phenomenon occurs
in different corpora.

Improvements in micro purity have been tested for
significance via t-tests. The null hypothesis is that both
results come from the same distribution with the same
mean. In this case they are not significantly different.
If the null hypothesis is rejected then the difference is
statistically significant.

The modifications made to K-tree for use with RI
had a significant impact. The unmodified K-tree and
modified K-tree were compared. Specifically, config-
urations B and D, and configurations C and E were
tested against each other. All dimensions were com-
pared against each other. The improved performance of
the modified K-tree was statistically significant for all
dimensions (100 vs 100, 200 vs 200 and so on) with a
p-value of 0 or extremely close to 0 (p < 1 × 10−100).

The modified K-tree using RI was tested with two
representations. Configurations D and E were tested
at all dimensions. The null hypothesis was rejected
at all dimensions except 10000. This means that
BM25 performed significantly better than the BM25
+ LF-IDF representation at all dimensions except
10000. At 10000 dimensions the difference was not
considered statistically significant with a p-value of
0.3. The increased performance of this representation
in classification did not apply to clustering when using
RI. The LF-IDF representation may be interfering
with the BM25 representation and approaches such as
reducing the weight of LF-IDF in the RI process or
performing RI separately on each representation and
then concatenating the reduced vectors may improve
performance. Running k-means on the full sparse
vectors will also indicate if RI is responsible for this.
Further experimentation is required to provide more
evidence for this result.

The unexpected results in configuration A were
tested against the best RI configuration, E. The highest
average at 400 dimensions in configuration A was
tested against all dimensions in configuration E (400 vs
100, 400 vs 200, 400 vs 400, 400 vs 1000 and so on).
The RI K-tree, configuration E, became statistically
more significant at 2000 dimensions with a p-value
of 1.48 × 10−6 and thus rejected the null hypothesis.
For dimensions 4000 through 10000, the performance
difference was statistically significant, with a p-value
of 0 in all cases. Thus, RI K-tree improves results, even
over the unexpected high results of configuration A,
by embedding the original 200,000 dimensional term
space into at least a 2000 dimension reduced space.



ID K-tree Representation

A Unmodified TF-IDF Culling, BM25
B Unmodified RI, BM25 + LF-IDF
C Unmodified RI, BM25
D Modified RI, BM25 + LF-IDF
E Modified RI, BM25

Table 1: K-tree Test Configurations
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Figure 6: Purity Versus Dimensions
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Figure 7: Entropy Versus Dimensions

6.1 INEX Results
The INEX XML Mining track is a collaborative evalu-
ation forum where research teams improve approaches
in supervised and unsupervised machine learning with
XML documents. Participants make submissions and
the evaluation results are later released.

The RI K-tree in configuration E performs on aver-
age at a comparable level to the best results submitted
to the INEX 2008 XML Mining track. The top two
results from the track had a micro purity of 0.49 and
0.50. These are not average scores for the approaches
but the best results participants found. The RI K-tree in
configuration E had a maximum micro entropy of 0.55.
This is 10% greater than the INEX submissions.

Symbol Meaning

α Average Micro Entropy
β Standard Deviation ofα
γ Average Micro Purity
δ Standard Deviation ofγ

Table 2: Symbols for Results

Dimensions α β γ δ

100 2.6299 0.0194 0.3981 0.0067
200 2.4018 0.0207 0.4590 0.0085
400 2.2762 0.0263 0.4814 0.0093
800 2.2680 0.0481 0.4768 0.0155
1000 2.2911 0.0600 0.4703 0.0192
2000 2.3302 0.0821 0.4569 0.0254
4000 2.3751 0.1103 0.4401 0.0331
8000 2.3868 0.1068 0.4402 0.0300
10000 2.3735 0.1062 0.4431 0.0306

Table 3: A: Unmodified K-tree, TF-IDF Culling, BM25

Dimensions α β γ δ

100 3.0307 0.0149 0.3093 0.0045
200 2.9295 0.0206 0.3300 0.0079
400 2.7962 0.0379 0.3648 0.0143
800 2.6781 0.0718 0.3921 0.0236
1000 2.6509 0.0842 0.3959 0.0260
2000 2.6315 0.1262 0.3908 0.0345
4000 2.6380 0.1451 0.3860 0.0356
8000 2.6371 0.1571 0.3844 0.0382
10000 2.6302 0.1540 0.3876 0.0385

Table 4: B: Unmodified K-tree, Random Indexing,
BM25 + LF-IDF

Dimensions α β γ δ

100 2.9308 0.0213 0.3337 0.0089
200 2.7902 0.0335 0.3724 0.0126
400 2.6151 0.0417 0.4089 0.0116
800 2.5170 0.0703 0.4238 0.0197
1000 2.5066 0.0858 0.4234 0.0240
2000 2.4701 0.0938 0.4275 0.0258
4000 2.4581 0.0979 0.4261 0.0271
8000 2.4530 0.1139 0.4260 0.0318
10000 2.4417 0.1019 0.4283 0.0283

Table 5: C: Unmodified K-tree, Random Indexing,
BM25



Dimensions α β γ δ

100 3.1527 0.0227 0.3105 0.0047
200 3.0589 0.0266 0.3312 0.0065
400 2.9014 0.0259 0.3726 0.0065
800 2.6690 0.0336 0.4204 0.0085
1000 2.5890 0.0319 0.4349 0.0090
2000 2.3882 0.0428 0.4700 0.0129
4000 2.2558 0.0443 0.4879 0.0144
8000 2.1933 0.0473 0.4935 0.0162
10000 2.1735 0.0496 0.4969 0.0171

Table 6: D: Modified K-tree, Random Indexing, BM25
+ LF-IDF

Dimensions α β γ δ

100 3.0717 0.0263 0.3269 0.0074
200 2.9078 0.0291 0.3706 0.0087
400 2.6832 0.0293 0.4191 0.0077
800 2.4696 0.0350 0.4555 0.0106
1000 2.4093 0.0399 0.4673 0.0115
2000 2.2826 0.0422 0.4853 0.0137
4000 2.2094 0.0416 0.4937 0.0141
8000 2.1764 0.0429 0.4975 0.0149
10000 2.1686 0.0440 0.4981 0.0161

Table 7: E: Modified K-tree, Random Indexing, BM25

7 Conclusion
RI K-tree was introduced as an attractive approach for
large scale document clustering. This is the first time
RI and K-tree have been combined. The results show
that RI K-tree improves quality of clustering results,
even over the unexpected results found when using TF-
IDF culling. Further experiments are required to deter-
mine if the unexpected effect of TF-IDF culling at low
dimensions is an anomaly or actually exists in many
collections. Additionally, RI K-tree is an efficient and
high quality approach to overcome previous problems
with sparse representations when using K-tree. Unfor-
tunately the combination of BM25 and LF-IDF repre-
sentations did not improve results in clustering as they
did in earlier classification results.
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