
Web Indexing on a Diet: Template Removal with the Sandwich Algorithm

Tom Rowlands, Paul Thomas, and Stephen Wan
CSIRO ICT Centre

tom.rowlands@csiro.au, paul.thomas@csiro.au, stephen.wan@csiro.au

Abstract Web pages contain both unique text, which
we should include in indexes, and template text such as
navigation strips and copyright notices which we may
want to discard. While algorithms exist for removing
template text, most rely on first completing a crawl and
then parsing each page. We present a cheap and effi-
cient algorithm which does not parse HTML and which
requires only a single pass of the document. We have
used two web corpora to investigate the performance of
a retrieval system using our algorithm and have found
similar eectiveness with an index 9-54% smaller. Fur-
ther experiments using a marked-up corpus have shown
97% of desired lines are returned.

Keywords Web documents, information retrieval

1 Introduction
Retrieving information from within a web document is
made more difficult by the presence of template text.
Such templates include, for example, the header and
footer information that sandwiches the real content of
the document. These are typically inserted automat-
ically by HTML authoring tools and scripts that dy-
namically generate HTML pages, in order to provide
a website with a consistent look-and-feel. Ideally, an
information retrieval system would be able to discard
such template material when it doesn’t contribute to the
topic of a page.

In this paper, we treat template detection and re-
moval as a longest common subsequence (LCS) prob-
lem, giving an efficient solution. Our experiments with
the WT10g corpus and an enterprise data set demon-
strate gains in efficiency with low complexity.

2 Related work
Related work has been characterised as using either a
local or a global approach [3]. A local approach exam-
ines a page in isolation to find the template material. In
contrast, a global approach determines shared templates
by examining two or more documents from a collection.

Most approaches handle templates with a two-pass
algorithm: the first pass identifies the template and the
second extracts it. Approaches to identifying the tem-
plate have included structural comparisons, often us-

Proceedings of the 14th Australasian Document Comput-
ing Symposium, Sydney, Australia, 4 December 2009.
Copyright for this article remains with the authors.

ing the document object model of the HTML docu-
ment. Tree comparison methods have been used to ex-
amine similarities in HTML tag elements [8]. Simi-
larly, Wang et al. [9] look for tables specifying layout.
Visual blocks have been segmented using classification
approaches [7].

In contrast to examining document structure, other
approaches simply examine page text and are thus
cheaper to run. Word-level features such as term
frequency and word position statistics have been
exploited to induce templates [2]. A similar approach
using text fragment frequencies is explored by
Gibson et al. [3]. Our work is similarly non-structural
but does not require any statistical modelling.

3 The sandwich algorithm
We investigate template detection and removal from
the viewpoint of improving the efficiency of a web
search engine. As such, we start with the constraint
that the solution must be able to operate as documents
are crawled.

The algorithm is derived from the intuition that,
given the prevalence of HTML authoring tools and
website content management systems, documents in
the same directory will likely share the same template.
The template lines are detected by comparing the
target file—line by line—with a sibling document
in the directory, referred to here as a peer. The
longest common subsequence (LCS) of lines is a
non-contiguous set of lines in common to a document
and its peer. Our approach assumes all such lines are
from a template and can be discarded. The remaining
lines are considered indexable material and kept. If
there are no other pages in the directory, and therefore
no candidate peers, no template removal is attempted.

Our approach is global but reduces to a single pass.
That is, identification of the template is performed
per document, and template material is removed at
the same time. As a result, this approach can be
implemented in a crawler before material is stored. If
the crawl is breadth-first, in most cases an appropriate
peer will simply be the last page crawled.

Different algorithms produce the LCS in O(n2)
to O(n logn) time [5, 6], where n is the number
of lines in each document. No HTML parsing is
required; the algorithm is entirely independent of



the markup language.1 The algorithm can remove
template text from “split” content, where template
material is injected in between portions of useful text.
Implementation is straightforward and simpler than
competing approaches, which makes template removal
an option where engineering resources are limited.

4 Experiments
Our early experiments consider two measures. First,
we examine the effectiveness and efficiency of a re-
trieval system which employs the sandwich algorithm.
Second, a corpus with templates explicitly marked al-
lows us to investigate our algorithm’s accuracy. (These
only provide a quick check of the algorithm’s perfor-
mance; in this first work we have not conducted an
in-depth comparison with competing, more complex,
techniques.)

To investigate the performance of a retrieval system
which incorporates the sandwich algorithm, we used
PADRE [4]—which implements a variant of BM25—
and two corpora. The WT10g corpus, used by the
TREC web track [1], includes about 1.7 million web
pages from a variety of hosts. Peers were found for
92% of pages. We used three sets of associated queries
(“topics”). Topics 451–500 (from TREC 2000) and
501–550 (from TREC 2001) are reverse engineered
from search engine query logs. Topics EP1–145, also
from TREC 2001, concentrate on finding home pages.
Since by removing navigation blocks we will remove a
number of links to each site’s entry page, performance
on this latter set of queries seems likely to degrade.

The second corpus is in the media domain, and was
collected from a large, national media organisation’s
website. It comprises about 760,000 documents for
which peers were found for 98%. 88 queries were used
from a sample of the organisation’s query log, with
judgements by an author who was familiar with the
organisation. A subset of this corpus has templates
explicitly marked.

In these experiments, which used a pre-existing
crawl, a page’s peer was based on its name n: it
was that page in the same directory whose name was
closest to n. “Closest” was defined with respect to edit
distance.

The first question we ask is: how much more effi-
cient can an index be if templates are removed? To our
knowledge, template removal approaches have not been
examined by this measure. Table 1 summarises the size
of each corpus with and without processing; and the
number of postings in an index of each.

Since a lot of templates are formatting or script-
ing instructions, which will not be indexed anyway, the
savings in postings are less than the savings in corpus
size—however even the smallest saving, 9% of postings
for WT10g, seems worthwhile, and the figures for the

1If the input is known to be, e.g., HTML or SGML then a tokeniser
could be run first and the LCS computed over streams of tokens. We
have not yet pursued this idea.

As-is LCS removed

WT10g 10.7 GB 9.0 (−17%)
1.4×109 postings 1.2×109 (−9%)

media 12.3 GB 4.0 (−67%)
1.1×109 postings 0.5×109 (−54%)

Table 1: Corpus and index sizes for two corpora, before
and after processing.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●

●

●

●

●

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Query

A
P

● As−is
Templates removed

Figure 1: AP scores for queries 451–500, processed
with and without templates in the index.

media corpus represent a substantial savings. The fig-
ures for WT10g are smaller than the 40–50% suggested
by Gibson et al., but the WT10g crawl is older than the
one used there and the use of templates has been grow-
ing since [3]. By insisting on exact string matches we
are also conservative in identifying possible templates.

Although a substantial fraction of the index has been
removed, retrieval performance is unaffected. Figure 1
illustrates the AP scores for each of topics 451–500: on
most queries there is no discernable change and overall
there is no significant difference (Wilcoxon p > 0.99).
Topics 501–550 and EP1–145, and the media set, are
similar (p > 0.2, p > 0.5, and p > 0.4 respectively).

A further question is: how accurate are we in
removing templates? We compared our output, line
by line, with a subset of the media corpus explicitly
marked by the organisation. Blank lines and content-
less HTML (e.g. a sole <p> on a line) were not
considered in the comparison. The precision and recall
of lines classified as non-template material (and hence
kept) is 57% and 97% respectively, with an F1 score
of 0.59. The algorithm is correctly keeping the great
majority of interesting text, although our conservative
approach means we are also keeping a portion of
templates.

5 Conclusions and Future Work
Templates represent a substantial, though generally
uninformative, portion of text on the web. Removing
templates leads to a reduction in index size, without
a drop in query performance. Line-based LCS



comparison provides a cheap method for template
detection and removal, allowing for easy integration
within a web crawler. In future work, we intend to
use the sandwich algorithm with question answering
systems and automatic text summarisers, both of
which can benefit greatly with the accurate removal of
irrelevant template material.

Acknowledgements
We thank the anonymous reviewers for their feedback
and for their useful ideas.

References
[1] Peter Bailey, Nick Craswell and David Hawking. Engi-

neering a multi-purpose test collection for web retrieval
experiments. Info Proc & Management, Volume 39,
Number 6, pages 853–871, November 2003.

[2] Laing Chen, Shaozhi Ye and Xing Li. Template detection
for large scale search engines. In Proc. ACM Symposium
on Applied Computing, pages 1094–1098, 2006.

[3] David Gibson, Kunal Punera and Andrew Tomkins.
The volume and evolution of web page templates. In
Proc. WWW, pages 830–839, 2005.

[4] David Hawking, Peter Bailey and Nick Craswell. Effi-
cient and flexible search using text and metadata. Tech-
nical Report 2000/83, CSIRO Mathematical and Infor-
mation Sciences, 2000. http://es.csiro.au/pubs/

hawking_tr00b.pdf.

[5] Daniel S. Hirschberg. Algorithms for the longest com-
mon subsequence problem. J. ACM, Volume 24, Num-
ber 4, pages 664–675, 1977.

[6] James W. Hunt and Thomas G. Szymanski. A fast
algorithm for computing longest common subsequences.
Comm. ACM, Volume 20, Number 5, pages 350–353,
1977.

[7] Ruihua Song, Haifeng Liu, Ji-Rong Wen and Wei-Ying
Ma. Learning block importance models for web pages.
In Proc. WWW, pages 203–211, 2004.

[8] Karane Vieira, Altigran S da Silva, Nick Pinto, Edleno S
de Moura, João M B Cavalcanti and Juliana Freire. A fast
and robust method for web page template detection and
removal. In Proc. CIKM, pages 258–267, 2006.

[9] Yu Wang, Bingxing Fang, Xueqi Cheng, Li Guo and
Hongbo Xu. Incremental web page template detection.
In Proc. WWW, pages 1247–1248, 2008.


